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1. INTRODUCTION

“The more accurate the calculations become the more
concepts tend to vanish into thin air.”

Robert S. Mulliken

The coupled cluster (CC) theory has played a revolutionary
role in establishing a new level of accuracy in electronic structure
calculations and quantum chemical simulations. Thirty years of
active development have resulted in a variety of CC methods
capable of providing∼1 kcal/mol accuracy (chemical accuracy) in
calculations of the electronic correlation energy for chemical
systems with up to hundreds of correlated electrons. Reliable
geometry optimization, thermochemical and spectroscopic pre-
dictions, weak interaction modeling, and other theoretical pro-
blems can be accurately treated with the existing CC machinery.

Despite the huge progress made in the field, several classes of
quantum chemical problems are still awaiting a more reliable
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solution. Namely, we are talking about the description of electronic
structure of chemical systems plagued by “quasidegeneracy”.
Quasidegeneracy exhibits itself through the presence of several
leading components in the wave function, thus breaking the
accuracy of the Hartree�Fock approach and seriously deterior-
ating the accuracy of those correlation models which rely on the
“single-determinant” assumption. Unfortunately, many chemical
(especially photochemical) processes fall into this category.
Description of homolytic bond breaking/formation, open-shell
and excited electronic states, transition-metal complexes, and
transition states of chemical reactions are the examples of
quasidegenerate (multireference, MR) problems. In such cases,
conventional CC approaches (called single-reference, SR) often
fail to provide a meaningful result, being far from the chemical
accuracy. Complementary CC methods, which are supposed to
extend the practical applicability of CC theory to quasidegene-
rate phenomena, form the multireference CC theory (MRCC).

Interestingly, the MRCC theory started approximately at the
same time as the SRCC theory (conventional CC theory).
However, even now the situation in the MRCC field is not
satisfactory, since none of the MRCC methods is in a wide use
(for different reasons). Nevertheless, recent advances in MRCC
theory make us believe that things can be changed in a positive
way. In this review, we would like to summarize and critically
analyze numerous efforts put forth to solve quasidegenerate
(multireference) problems with the CC theory. We hope that
our critical analysis and broad vision of the problem can facilitate
a “synthesis” of an ultimate MRCC route (routes) in the nearest
future. This would significantly extend the domain of reliable
(chemically accurate) applicability of CC theory.

The review is organized as follows. In section 2, we remind
the reader of the origins of the CC theory, stressing its very
important formal property called size-extensivity. Subsequently,
we expose the reasons why the conventional SRCC theory
fails in solving MR problems. Thus, we motivate the necessity
of a proper MRCC extension of the CC theory. In section 3
we address the so-called “genuine” Hilbert-space MRCC meth-
odology, including the classical multistate approaches based on
the effective Hamiltonian, the “state-specific” formulations, and
the recently advanced internally contracted MRCC methods
(which look quite promising). In section 4, we address the so-
called “genuine” Fock-space MRCC methods, which can simul-
taneously compute electronic states with a different number
of particles (contrary to the Hilbert-space MRCC theory). We
describe the classical valence-universal MRCC approaches
(based on the effectiveHamiltonian) as well as the formulations
based on the intermediate Hamiltonian (which efficiently over-
come the intruder state problem). In section 5 we proceed to
alternative MRCC schemes, which simply adjust the SRCC
formalism to MR problems (in most cases by properly extend-
ing the SRCC wave function). Such methods include the
SRMRCC theory, the “externally corrected” approaches, the
equation-of-motion based CC techniques, the CC method of
moments, the orbital optimizedCC approaches, the CC schemes
inspired by the generalized-valence-bond method, and the so-
called “adaptive” and “semiadaptive” CC approaches. Besides
the pure CC theory, the “dressed” MRCI (multireference
configuration interaction) approaches are also briefly dis-
cussed. Finally, in section 6 we collected numerous numerical
results which are used to complement our theoretical analysis
of MRCC methods. Our conclusions are given in section 7.

2. EXPONENTIAL ERA OF ELECTRON CORRELATION
THEORY

2.1. Separability/Extensivity Properties and the Origins of
the Coupled Cluster Theory

The electron correlation theory was given a second birth with
the emergence of the coupled cluster (CC) theory, the most
prominent many-body method for constructing correlated
many-particle wave functions. The exponential form of the
correlated wave operator, called the exponential ansatz, is the
distinguishing feature of the coupled cluster theory:

jΨæ ¼ eT̂ j0æ ð2:1:1Þ
where |Ψæ is the N-electron CC wave function, |0æ is an
N-electron reference Slater determinant also called the Fermi
vacuum (for example, the Hartree�Fock determinant), and T̂
is an excitation operator which generates a manifold of excited
determinants by promoting electrons from occupied orbitals of
the reference determinant to the virtual ones.1 Contrary to the
configuration interaction (CI) theory, the excitation operator
is exponentiated. The exponential representation first ap-
peared in the paper of Hubbard,2,3 which is viewed as the
natural inverse of the linked diagram theorem (LDT) of
Brueckner and Goldstone,4�10 which was usually written via
a logarithm. The eT̂ construct naturally provided an infinite-
order summation of the linked diagrams of many-body pertur-
bation theory (MBPT).11 It was then considered in nuclear
physics by Coester and K€ummel,12,13 though no explicit
equations were presented. Interestingly, an exponential repre-
sentation of “correlated” functions for atoms and molecular
units (not electrons) together with the concept of cumulants
had been used in statistical many-body theory long before.14

The exponential representation (cumulant-based representa-
tion of the moment-generating function) is fundamental in
correlated many-particle physics, as emphasized by Kubo.396

Nevertheless, the method began to truly prosper when the
coupled cluster approach was brought into quantum chemistry
by �Cí�zek,15,16 �Cí�zek and Paldus,17 Paldus et al.,18 Bartlett and
Purvis,19,20 and Pople et al.21 In this context, it is also worth
mentioning the related many-electron theory (MET) of
Sinano�glu22 and the method of Nesbet.23 The next important
series of developments was accomplished by Bartlett and co-
workers, who introduced the full coupled-cluster singles and
doubles (CCSD) method,24 subsequently adding full triple
(CCSDT)25,26 and quadruple (CCSDTQ)27 clusters into the
excitation operator T̂. Besides a full inclusion of all such terms,
various approximate versions, either iterative, like CCSDT-
n,25,26 or noniterative, like CCSD[T],28 were introduced.
The latter approach evolved into the so-called “gold standard”
of quantum chemistry due to two additions, one due to
Ragavachari et al.29 (see also Bartlett et al.30) and the other
by Watts et al.31 Together they provide all fourth-order correc-
tions to CCSD for any choice of the reference determinant.28�31

The further CC machinery of equal significance for chemistry
was developed to enable analytical forces to be obtained for
the nonvariational CC methods,32�40 to treat excited elec
tronic states with the equation-of-motion (EOM) CC
extension41�43,424 or linear response (LR) CC theory,55,441,442

and to apply such tools to higher-order molecular properties.44,45

Approximate methods like the symmetry-adapted-cluster (SAC)
approach46,47 together with its SAC-CI extension for excited
states47,439,440 and the coupled-electron-pair approximation
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(CEPA)48 were concurrently considered, but they either lacked
the rigorous size-extensivity of CC theory or its orbital invariance
properties or neglected some nonlinear terms that give CC theory
its power. Consequently, since the late 1970s the single-reference
coupled cluster (SRCC) theory, based on the ansatz in eq 2.1.1,
has remarkably advanced and is widely recognized as being the
most accurate practical tool for ab initio correlated calculations of
small-to-medium-sized chemical systems not far from their equi-
librium geometries.1

The exponential form of the CC wave operator, eT̂, is a natural
consequence of satisfying a critical property of the exact wave
function called multiplicative separability.15�22,49,438 Indeed, the
exact wave function |ABæ of a supersystem of two (or more)
noninteracting subsystems must be simply a product of the sub-
system wave functions (|Aæ, |Bæ):

jABæ ¼ ŜABjAæjBæ ¼ ŜBAjBæjAæ, ð2:1:2Þ

where AB designates the supersystem consisting of two non-
interacting subsystems, A and B, and ŜAB/ŜBA is the “inter-
system” antisymmetrizer of electron coordinates. Hereafter a
“system” means a system of electrons moving in a certain field
(created by nuclei, for example). The product structure of the
wave function is a consequence of the direct-sum structure of the
Hamiltonian of such a supersystem:Ĥ =ĤAxĤB =ĤÂIB + ÎAĤB.

49

For the sake of simplicity, we omit the requirement of spin
purity for the composite wave function, which in general may
prevent such a direct-product separability (in such a case, a
proper linear combination of degenerate direct products must
be constructed). Note that separability of the total wave
function also requires the vacuum state (reference function)
to separate correctly:

jæAB ¼ ŜABjæAjæB ¼ ŜBAjæBjæA ð2:1:3Þ

Using second quantization, one can rewrite eq 2.1.2 in terms of
wave operators (Ω̂):

Ω̂ABjæAB ¼ Ω̂AΩ̂BjæAB ¼ Ω̂BΩ̂AjæAB ð2:1:4Þ

where Ω̂A and Ω̂B operators commute, since they act on
different degrees of freedom (difference subsystems).

It is known that the exponential wave operator Ω̂ = eT̂

automatically satisfies the requirement of proper separability
(disregarding spin purity for now):

Ω̂AB ¼ eT̂AB ¼ eT̂A þ T̂B ¼ eT̂AeT̂B ¼ eT̂BeT̂A ð2:1:5Þ

½T̂A, T̂B� ¼ 0 ð2:1:6Þ

T̂AB ¼ T̂A þ T̂B ð2:1:7Þ
where an arbitrary T̂A or T̂B excitation operator acts only on the
subsystem A or B, respectively. This also makes them commute.
Such multiplicative separability of the wave function leads to
additive separability of the energy, that is, the energy of a super-
system composed of noninteracting subsystems equals the sum
of the subsystem energies. In our case, EAB = EA + EB. Indeed,

rearranging the supersystem eigenvalue problem one has

EABe
T̂A þ T̂B j0æ ¼ ĤABe

T̂A þ T̂B j0æ

¼ ðĤA þ ĤBÞeT̂A þ T̂B j0æ

¼ eT̂B ĤAe
T̂A j0æ þ eT̂A ĤBe

T̂B j0æ

¼ eT̂BEAe
T̂A j0æ þ eT̂AEBe

T̂B j0æ

¼ ðEA þ EBÞeT̂A þ T̂B j0æ w
EAB ¼ EA þ EB ð2:1:8Þ

In molecular electronic structure, the ability of a method to
provide additively separable energies for a supersystem com-
posed of noninteracting subsystems is called size-consistency.49,338

Size-consistency is closely related to the multiplicative separ-
ability of the wave function49 or, in general, to the direct-product
structure of the composite Hilbert space used for a supersystem
description.397 Provided that the reference function adopts
a direct-product form in the noninteracting separated limit
(|0æAB = |0æA X |0æB), the use of an exponential ansatz for the
wave function ensures size-consistency.

In quantum chemistry, size-consistency is a highly desirable
property due to the necessity of simulating chemical reactions
where the reactants (at the beginning) and the products (at the
end) do not interact. Consequently, the method employed must
not introduce any unphysical correlations in order to obtain an
accurate potential energy surface (PES). Standard CC methods
provide a size-consistent description of chemical problems. In
contrast, standard configuration interaction (CI) approaches
introduce unphysical correlations and violate the requirement
of size-consistency due to the “artificial” neglect of higher
excitations (higher excited components of the Hilbert space with
a determinantal basis) that spawns unlinked diagrams in the
corresponding many-body equations.50 In the CC theory, higher
excitations naturally appear as products of lower excitations,
canceling all unphysical (unlinked) terms. The additive separ-
ability of the CC correlation energy and the cancellation of all
unlinked terms in the CC equations can be seen as an exhibition
of another important formal property called size-extensivity (to be
clarified below).

In principle, eq 2.1.8 (EAB = EA + EB) provides a possibility of
a simple numerical check whether the correlation energy ob-
tained with a particular method is additively separable or not.
However, in practice such a supersystem additivity test is not
always possible, in particular because the underlying method
must be equally applicable to both the supersystem and the
subsystems (for example, theremight be problemswhen the super-
system is of closed-shell type while subsystems are open shells).
Also, convergence problems due to orbital degeneracy can occur
when the supersystem is composed of identical noninteracting
units (either closed-shell or open-shell).

From the brief discussion of separability properties of a many-
body wave function, let us now proceed to extensivity/intensivity
properties of a many-body method. While size-consistency in
quantum chemistry assumes the absence of subsystem interac-
tions (sometimes also excluding possible spin coupling) and
makes sense only when a physical separation of certain units
occurs, the formal property of size-extensivity is tightly connected
to thermodynamics of general extended many-body systems. As
known, all observables in thermodynamics are either extensive
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(“proportional” to the number of particles) or intensive
(“independent” of the number of particles). Hence, it is
extremely important for a particular approximate method to
preserve the principal extensivity/intensivity of the observable
calculated, especially when simulating large chemical systems.
In this sense, the standard CC theory, as well as its perturbative
approximations in the form of MBPT, are known to be
size-extensive,4�11,49,51,52,397 that is, the CC/MBPT correlation
energy per particle is negative and bounded in the asymptote of
an infinite number of particles being correlated in a stable
extended chemical system. In contrast, the correlation energy
produced by a truncated CI approach is not size-extensive
(the CI correlation energy per particle tends to zero in the
limit). Thus, ordinary CI theory violates both the separability
and size-extensivity requirements which are actually related to
some extent. Note that for the calculated total electronic
energy, which is a sum of the reference energy, the correlation
energy, and the excitation energy, to be “truly” size-extensive,
the first two components must be individually size-extensive
while the excitation energy must be size-intensive (or zero).

Despite the existence of excellent reviews on separability
and extensivity properties encountered in quantum chem-
istry,49�52,308 these concepts can have different meaning in
other quantum sciences, due to historical reasons. In particular,
in solid-state physics one is predominantly concerned with
extensivity properties of a method while using the name “size-
consistency”. In the recent paper,53 Hirata tried to adopt and
elaborate the definitions coming from the solid-state physics
such that they can be applied in molecular electronic-structure
theory. Notwithstanding some interesting aspects of such a
formulation, we still believe that separability and size-extensivity
must be distinguished in general. Indeed, the correct de-
scription of chemical reactions (noninteracting units are
involved) is as important as the correct scaling of the energy
when enlarging the size of the simulated chemical system
(crystals, polymers, etc.). In this paper, we adopt the following
definitions:
Definition: A method is a particular formalism that can be

applied to a certain class of quantum problems
that represent its domain of use.

Definition: Size-extensivity/size-intensivity is a formal
property of a many-bodymethod that guarantees
the proper scaling behavior of calculated exten-
sive/intensive physical quantities with respect to
the number of particles in the system. A real
function E(N) is size-extensive in the asymptote
N f ∞ if its value per particle, E(N)/N, stays
confined in a finite real interval which does not
contain zero (N is the number of particles in the
system). A function E(N) is size-intensive if the
limit limNf∞E(N) exists.

Note that the above definitions of size-extensive/size-
intensive functions apply to an arbitrary inhomogeneous
chemical system.397 For periodical systems, the finite real inter-
val mentioned above asymptotically reduces to a point
(limNf∞E(N)/N exists). When talking about the size-extensiv-
ity/size-intensivity of a method, one must explicitly state the
physical quantity (function) it applies to. In particular, exten-
sive quantities are the total energy of a system or the correlation
energy of a system, while an intensive quantity is the excitation
energy, for example.

Definition: Size-consistency is a property of a calculation of a
system composed of a finite amount of noninter-
acting subsystems, such that the computed energy
of the entire system equals the sum of the energies
of the subsystems calculated separately with the
same method.

Size-consistency applies to a description of a quantum system
that requires specification of the system itself, its particular
electronic state, and all the methods employed (independent
particle model, correlated model, perturbative or CI corrections,
etc.). Here all the details generally matter (closed- or open-shell,
singlet or triplet state, RHF or UHF reference, etc.). Note that
both the supersystem and the subsystems must belong to the
domain shared by all the methods employed in the calculation.
Therefore, the size-consistency check is not always possible. In
general, size-extensivity and size-consistency are neither neces-
sary nor sufficient for each other, although they are not com-
pletely independent. It is known that size-extensivity ensures the
additive separability of the supersystem energy, provided that the
reference function adopts a direct-product form in the separated
limit.49 Hence, the requirement of size-extensivity is mandatory
when developing high-end correlated models.53 Here we restate
a sufficient condition for size-extensivity, traditionally based on
the many-body diagrammatic formalism and the linked diagram
theorem2�10,101 (see ref 11 for a detailed explanation of many-
body techniques; a critical analysis of the linked diagram theorem
can be found in ref 397).

Sufficient (“many-body”) condition for size-extensivity: A
calculated value of a physical quantity preserves its original
scaling characteristics if it can be expressed in terms of solely
linked diagrams involving only connected operators.

It is also important to ensure the invariance of calculated
intensive quantities with respect to an addition of noninteracting
molecular fragments (size-consistency of calculated intensive
physical quantities). By definition, a size-intensive quantity stays
bounded upon increasing the number of particles in the system. If
one can prove that the calculated quantity approaches some limit
(or stays invariant when adding noninteracting fragments), it is
size-intensive, regardless of the actual error. Being added to an
extensive quantity, it cannot change the scaling, thus resulting in
another extensive quantity. In contrast, size-extensive quantities
are “proportional” to the number of particles in the system.
Hence, their calculated values must scale properly with the
number of particles (according to the above definition of a
size-extensive function). Otherwise, a progressively growing rela-
tive error is introduced54 such that the method becomes pro-
gressively less accurate with the system size (this happens in
conventional truncated CI theory). For example, truncated CI
approaches yield correlation energies that scale as a square root
of the number of electrons in the system (while the exact quantity
must be “proportional” to the number of electrons). Thus, in
correlation energy calculations, conventional CI theory has zero
efficiency in the limit of infinitely large systems. Here by “efficiency”
we understand the fraction of the exact correlation energy
captured by a method. Any stable deviation from size-extensivity
in the limit leads to a zero efficiency of the method when
calculating size-extensive quantities, like correlation energy.
Hence, it is extremely important to preserve connectivity of the
many-body formalism, ensuring the linkedness of the calculated
extensive quantities in accordance with the above sufficiency
condition based on the classical linked diagram theorem.
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Sometimes it is also convenient to analyze the wave function
of a correlated method in terms of extensive and intensive parts.
Many correlated methods split the description of an electronic
state into two stages. First, the global part of the wave function is
computed, such that one captures the electron correlation effects
all over the system. Second, the wave function is locally corrected
such that the specificity of the electronic state comes into play.
For instance, when describing electronic excitations (which can
hardly involve the entire system if the latter is large), one is
interested in correcting only the part of the wave function related
to the excitation problem. An example is the equation-of-motion
(EOMCC) approach,41�43,424 where the ground state CC
calculation captures the electronic correlation effects over the
entire electronic system, producing an exponential wave function
that “covers” the whole system. Then, a CI operator modifies
only the part of the wave function that is involved in the
excitation process of interest. Thus, the ground state CC
calculation supplies size-extensive core energy and the global
(extensive) part of the wave function, while the CI calculation
yields only a size-intensive excitation energy and the correspond-
ing “semilocal” (intensive) part of the wave function.52,55 The
total energy of the excited state will be size-extensive, because the
addition of an intensive quantity (excitation energy) to an
extensive quantity (global ground-state correlation energy +
reference energy) will preserve size-extensivity. Adding new
fragments to the system, which are irrelevant to the excitation
process (core fragments), will result in modifying solely the
extensive (exponential) part of the wave function. Hence the
total energy will still be size-extensive.

Because size-extensivity does not assume the absence of interac-
tion, it is hard to check it numerically. Nooijen et al. suggested
the concept of generalized extensivity.49 Unlike size-extensivity,
the generalized extensivity allows, in principle, a numerical
check,49,398 which was the main motivation for introducing this
concept. Loosely speaking, the generalized extensivity test is
based on dividing the orbitals into two subsets in all possible
ways, zeroing out the integrals simultaneously involving orbitals
from both subsets, and checking the additive separability of the
energy. Later, Hanrath suggested a simplification for the general-
ized extensivity test.398 If a method fulfills the requirement of
generalized extensivity, it is also size-extensive and, under addi-
tional conditions (direct-product structure of the reference
state), provides a size-consistent description of the problem
(guarantees additive separability of the energy for a system
composed of noninteracting subsystems). Opposite statements
do not hold in general, amplifying the role of size-extensivity/
generalized-extensivity when developing new many-body meth-
ods. Generalized extensivity and size-extensivity also lead to size-
intensivity when one describes intensive physical properties49

(which are supposed to be invariant or convergent as the number
of correlated particles grows). There is also a less stringent
concept of core-extensivity.308 The core-extensivity is typically
thought of as size-extensivity with respect to the closed-shell
(core) part of the problem52 (as in the above example with the
EOMCC approach). Analogously, core-intensivity would mean
the invariance of the calculated intensive quantity with respect to
an addition of noninteracting closed-shell (core) fragments.

Let us summarize all important properties shared by coupled-
cluster methods:
(1) size-extensivity/size-intensivity;
(2) multiplicative separability of the wave function and size-

consistency;

(3) an exponential CC wave function is defined in the entire
Hilbert space (the cluster operator must include all single
excitations);

(4) yet the parametrization of the wave function is compact,
being represented by a tractable set of unknown cluster
amplitudes;

(5) cluster amplitudes have connected topology that facil-
itates elaboration of efficient linear scaling CC approaches
with explicit exploitation of locality of interactions;

(6) a truncated version of the CC ansatz, for instance the
CCSD approach with one- and two-electron clusters
(T̂ = T̂1 + T̂2), is exact not only for any two-electron
system but also for any ensemble composed of non-
interacting two-electron systems (this feature is drasti-
cally different from the CISD approach). Adding the T̂3

cluster operator leads to the exact description of any
ensemble composed of noninteracting three- or/and
two-electron systems, and so on.

Thus, CC methods cleverly combine the all-order-summation
property of CI with the size-extensivity property of MBPT. In
other words, the SRCC theory sums to all orders all the
perturbative terms of the connected exponent appearing in the
exponential representation of the wave operator.2,11,51

2.2. Asymmetric Coupled Cluster Ansatz
In SRCC theory a particular single determinant, |0æ, plays a

special role in defining the Fermi vacuum and establishing the
excitation-rank hierarchy, where singly excited determinants are
obtained by promoting one electron from an occupied spin-
orbital of the Fermi vacuum to a virtual one, doubly excited
determinants are obtained by promoting two electrons from two
occupied spin�orbitals to the virtual ones, and so on, as
illustrated in Figure 1. All possible excited determinants serve
as a many-particle basis set spanning the Hilbert space
(orthonormalization is implied). In the basic CCSD approach
the wave function is constructed with the following wave
operator:

jΨCCSDæ ¼ eT̂1 þ T̂2 j0æ
¼ 1 þ T̂1 þ T̂2 þ 1

2!
T̂1

2 þ T̂2T̂1 þ 1
3!
T̂1

3
�

þ 1
2!
T̂2

2 þ 1
2!
T̂2T̂1

2 þ 1
4!
T̂1

4 þ :::

�
j0æ ð2:2:1Þ

T̂1 ¼ ∑
a1
i1

ta1i1 τ̂
a1
i1 , T̂2 ¼ 1

2!2! ∑
a1, a2
i1, i2

ta1a2i1 i2 τ̂
a1a2
i1 i2 ð2:2:2Þ

where τ̂ i1
a1 = â1

+̂i1
�, τ̂ i1i2

a1a2 = â1
+â2

+̂i2
�̂i1

� are single and double
elementary excitation operators expressed in second quantiza-
tion, and ti1

a1, ti1i2
a1a2 are corresponding cluster amplitudes. The

linear terms in eq 2.2.1 are called connected clusters (T̂1, T̂2),
whereas the nonlinear terms are called disconnected (T̂1T̂2, T̂2T̂2,
etc.). Importantly, the latter terms “propagate” through the
entire Hilbert space, ensuring the size-extensivity of the method.
Let us assign italic letters i, j to Fermi-vacuum holes (occupied
spin�orbitals) and a, b to particles (virtual spin�orbitals). In the
following, we will use a spin�orbital based representation of the
corresponding tensors (amplitudes of operators), except the
cases where we explicitly deal with a spin-adapted formulation.
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In coupled cluster theory, a natural normalization of the wave
function is the intermediate normalization

Æ0jΨæ ¼ 1 ð2:2:3Þ
Hence, the configurational weight of the reference determinant is
unity (the first term in the McLauren series expansion of an
exponential), other determinants presumably having much smaller
configurational coefficients (Ci1i2...

a1a2...) expressed in terms of the
products of cluster amplitudes ti1

a1, ti1i2
a1a2, etc.:

Ca1
i1

¼ ta1i1 ð2:2:4Þ

Ca1a2
i1 i2 ¼ ta1a2i1 i2 þ ðta1i1 ta2i2 � ta2i1 t

a1
i2 Þ ¼ ta1a2i1 i2 þ ta1i1 ∧ ta2i2

ð2:2:5Þ

Ca1a2a3
i1 i2 i3 ¼ ta1a2a3i1 i2 i3 þ ta1a2i1 i2 ∧ ta3i3 þ ta1i1 ∧ ta2i2 ∧ ta3i3 ð2:2:6Þ

where ∧ generates all unique permutations of indices modifying
the sign appropriately. The expression in eq 2.2.6 would not
contain triply excited clusters, ti1i2i3

a1a2a3, in the CCSD model. The
CCSD equations are formed by projections of the Schr€odinger
equation, premultiplied by e�(T̂1+T̂2), against all singly and
doubly excited determinants together with the projection against
the reference determinant that defines the correlation energy:

" Æxj ∈ fÆ0j ∪ Æa1i1 j ∪ Æa1a2i1 i2
jg :

Æxje�ðT̂1 þ T̂2ÞĤNe
T̂1 þ T̂2 �ΔEj0æ ¼ 0 ð2.2.7aÞ

" Æxj ∈ fÆ0j ∪ Æa1i1 j ∪ Æa1a2i1 i2 jg :

ÆxjðĤNe
T̂1 þ T̂2ÞC �ΔEj0æ ¼ 0 ð2:2:7bÞ

where ΔE = Æ0|(ĤNe
T̂1+T̂2)C |0æ is the correlation energy,

the subscript C means that only connected terms are retained
in the equations, andĤN = (Ĥ � E0) is the normal-orderedmany-
body Hamiltonian

ĤN ¼ ∑
p, q

f pq fp̂þq̂�g þ 1
4 ∑

p, q
r, s

Vpq
rs fp̂þq̂þ ŝ� r̂�g ð2:2:8Þ

while E0 is the reference energy (for example, the Hartree�Fock
energy), fq

p are Fock-matrix elements, Vrs
pq = Æpq|̂r12�1|rsæ �

Æpq|̂r12�1|sræ are antisymmetrized two-electron integrals, and curly
brackets mean normal-ordering with respect to |0æ. Indices
designated by p, q, r, s run over the entire orbital range (hole
and particle). The construct e�T̂ĤNe

T̂ = (ĤNe
T̂)C is called the

similarity-transformedHamiltonian. It can be reexpressed in terms
of commutators

Ĥ � e�T̂ĤNe
T̂

¼ ĤN þ ½ĤN , T̂� þ 1
2!
½½ĤN , T̂�, T̂�

þ 1
3!
½½½ĤN , T̂�, T̂�, T̂� þ 1

4!
½½½½ĤN , T̂�, T̂�, T̂�, T̂� ð2:2:9Þ

where higher than 4-fold commutators cannot appear because of
the two-body nature of the Hamiltonian and commutativity of all
components in T̂. Because of the above form of the similarity-
transformed Hamiltonian, the SRCC theory is nonhermitian and
nonvariational.1

Removal of the T̂1 operator from the CCSD ansatz yields the
CCD approach. By neglecting nonlinear terms in the CC ansatz,
one obtains the linearized coupled cluster theory. Addition of
perturbative estimates for higher-rank amplitudes (mostly
triples) usually improves the quality of the results. The widely
used CCSD(T) method28�31 is an approach of this kind. The
existence of the SRCC Lagrangian

~E ¼ Æ0jð1 þ Λ̂Þe�T̂ ĤNe
T̂ j0æ ð2:2:10Þ

allows evaluation of analytic energy gradients. Here the Λ̂ operator
has the structure of the conjugated excitation operator, T̂+, with
the same amount of amplitudes separately determined via the Λ̂
equations:

" X̂ , X̂j0æ ∈ fja1i1 æ ∪ ja1a2i1 i2 æ ∪ ja1a2:::i1 i2::: æg :

Æ0jð1 þ Λ̂Þ½e�T̂ ĤNe
T̂ , X̂�j0æ ¼ 0 ð2:2:11Þ

where X̂ is an elementary excitation operator. Unfortunately,
unlike T̂, the Λ̂ operator is not fully connected, which can affect
(in principle) the calculation of molecular properties (via SRCC
reduced density matrices).

Importantly, practical SRCC approximations assume the dom-
inance of the reference determinant, |0æ, in the exact wave function,
|Ψexactæ:

" Æxj, Æxjxæ ¼ 1, Æxj0æ ¼ 0 : jÆxjΨæj e ε, Æ0jΨæ ¼ 1

ð2:2:12Þ
where roughly ε ≈ 0.1�0.2 (saying “practical” we mean CCD,
CCSD, their approximate variants and perturbatively corrected
analogues, like CCSD(T), that is, a variety of computationally
affordable SRCC approaches whose computational cost is no
higher than∼O(N7) with respect to the total number of orbitals,
N). Therefore, having an exponential SRCC wave operator requires
a selection of one special determinant (reference determinant) whose
configurational coefficient is supposed to have the largest magni-
tude in the exact wave function. We want to emphasize that it is
the availability of such a determinant (usually the Hartree�Fock
determinant) that leads to the success of ordinary SR approaches,
in particular ordinary SRCC methods. This determinant defines
a hole�particle vacuum on top of which excited determinants
(excitations) can be generated by promoting electrons from
occupied orbitals to the virtual ones. The possibility of a
chemically accurate approximation of the exact wave function
using only singly and doubly excited cluster amplitudes is only
due to the ability of the mean-field approximation to capture the
major part of the wave function in a single determinant. Failure to
commit such a single-determinant “compression” will result in a

Figure 1. Excitation rank hierarchy of determinants in the hole�
particle formalism.
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poor ability of an ordinary correlated SR approach to construct
the residual part of the wave function, which is no longer “small” in
this case. Roughly speaking, ordinary SR methods heavily rely on
reasonable mean-field independent-particle models, for example,
the Hartree�Fock method or another physically motivated
approach, like that due to Brueckner,56 Kohn�Sham,57 the first
natural determinant,58 quasi-Hartree�Fock,324,325 etc. In this
context, an attractive feature of the CC methods containing the
T̂1 operator is their relative insensitivity to the orbital choice,1

provided that the orbitals come from a physically reasonable
independent-particle model capturing the major interactions in
the considered electronic system. In more difficult cases, a
chemically accurate (∼1 kcal/mol for relative energies) represen-
tation of the exact molecular wave function requires a correlated
method that either explicitly accounts for higher excitations or is
free from the “single-determinant assumption”. This would be espe-
cially true for excited states, where the Hartree�Fock method
(or other single-determinant models) is not generally applicable.

The SRCC exponential ansatz built upon one particular
determinant is not invariant with respect to the choice of the
reference determinant, |0æ. This becomes obvious after realizing
the fact that by changing the Fermi vacuum one also changes (a)
the subspace against which the Schr€odinger equation is projected
and (b) the nonlinear parametrization of higher excitations. The
exponential parametrization of higher excitations via discon-
nected clusters essentially changes when proceeding from one
Fermi vacuum to another. Because of the truncation of the cluster
excitation operator, it is always a good idea to choose the Fermi
vacuum determinant to be the dominant one, thus reducing the
absolute values of “nonadjustable” disconnected higher excita-
tions and improving the convergence properties of the CC
expansion. The less the norm of the nonadjustable part of the
wave function, the less the potentially harmful effect caused by its
being not adjusted (not exact).

Concerning the spin/spatial symmetry of the SRCC wave
function, there is also a complication when open-shell systems
are considered. Contrary to CI theory, the presence of products
of cluster T̂ operators in the CC ansatz can lead to a symmetry-
contaminated wave function because the cluster products in
general can have components from different irreducible repre-
sentations, even though the cluster operators themselves have a
proper symmetry (closed-shell singlet states do not experience
this problem). It is interesting to note that disconnected cluster
products (for example, T̂1T̂2, (1/2!)T̂2

2, etc.) make CC methods
size-extensive but can distort the symmetry of the wave function
at the same time. In general, the inherent multiplicatively
separable nature of the exponential wave function with a
truncated cluster operator may lead to the inability of such a wave
function to rigorously reproduce the proper symmetry of the
electronic state under consideration (unless the cluster operator
is complete). In other words, a set of independent variables
employed in a particular truncated CC model might not be
sufficient to fulfill all symmetry requirements, since the dimen-
sion of the space “occupied” by the CC wave function is much
larger than the amount of independent variables (cluster
amplitudes). Therefore, we have the following tradeoff: rigorous
multiplicative separability versus rigorous symmetry of the wave
function. These two merge in the limit when the cluster operator
is complete. However, in practice, conventional CC theory
emphasizes the multiplicative separability of the wave function
and size-extensivity of the energy, whereas conventional CI
theory routinely employs symmetry-adapted wave functions.

In regard to this problem, Nakatsuji suggested a symmetry
projector applied to nonlinear terms in the SAC expansion,46,47

filtering out all wrong-symmetry components. Originally, the
solution scheme was based on the CI formalism neglecting
higher-order cluster products46 that destroys the power of CC
theory. In general, the process of excluding selected (or all)
nonlinear cluster products from the wave function can break the
connectivity of the approach because such procedures formally
introduce disconnected cluster amplitudes in the ansatz (they
serve for annihilation of the corresponding wrong-symmetry
disconnected excitations). Other approximations of this sort
were suggested for open-shell systems by Janssen and Schaefer59

and Neogr�ady et al.60 Bartlett et al. simply employed a high-spin
ROHF reference (or symmetry-broken UHF) with no further
attempt at spin-projection, although the Ŝ2 expectation value of
the final CC wave function was monitored.61 Apparently, if the
wave function is close enough to the exact solution, it is virtually a
spin eigenfunction (unless the wave function corresponds to a
degenerate eigenvalue of the electronic Hamiltonian). Szalay and
Gauss suggested an adaptation scheme by explicitly specifying
spin dependencies between the amplitudes.62�64 A methodolo-
gical study of the formal spin-adaptation problem was done by
Nooijen and Bartlett.65 We should also note that usually the
energetic impact of spin-contamination is small, although the
wave function may become qualitatively wrong in some cases.

A general orthogonally spin-adapted CC theory was developed
by Paldus and co-workers,66�73 based on the unitary group
approach.66,74�76 Indeed in the case of a spin-free Hamiltonian,
Ĥ, for which [Ĥ, Ŝ2] = 0, one can employ spin-free excitation
operators, Ê, based upon unitary group generators such that all
components transform according to a particular irreducible
representation of the unitary group U(n).69�76 Such excitation
operators are explicitly defined in terms of spatial molecular
orbitals, thus commuting with the total spin operator: [Ê, Ŝ2] = 0.
Acting on a spin-free configuration state function (spin
eigenfunction), the spin-free excitation operators ensure the
proper spin-symmetry of the total CC wave function while
formally preserving the exponential parametrization.65,67�73

For closed-shell singlet electronic states built upon a closed-shell
reference, the spin-adapted CC formulation is equivalent to the
ordinary CC approach based upon spin�orbitals and non-
spin-adapted excitation operators. In such a case, the spin-adapted
scheme clearly reduces the amount of independent amplitudes
by a factor of 2�3. However, for open-shell states the two
approaches are no longer equivalent in general. In the presence of
open-shell electrons in the reference function, the orthogonally
spin-adapted CC ansatz contains noncommuting excitation op-
erators, preventing the commutator series (eq 2.2.9) from its
usual termination after the fourth power in T̂.69�73 The corre-
sponding spin-adapted equations become extremely convoluted
bringing to naught the profit from reducing the amount of
variables in the ansatz. Nevertheless, such approaches allow
obtaining an Ŝ2-pure solution when non-spin-adapted CC meth-
ods fail. An attempt at alleviating the problems caused by the
presence of noncommuting operators in the spin-adapted ex-
ponential ansatz was undertaken by Datta and Mukherjee.77,78

Importantly, those authors pointed out the proper exponential
expansion factors (automorphic factors). In general, to truly make
an exponential properly symmetric is quite difficult in practical
implementations. Consequently, efficient computer implemen-
tations of rigorously spin-adapted open-shell CC methods are
practically absent. Note that spin-adaptation must be clearly
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distinguished from spin-integration. The latter technical proce-
dure has been routinely used in almost all CC/PT/CI methods,
reducing their computational cost (spin-integration is just a
summation over the spin coordinates in spin�orbital formulas).
Spin-integration does not change the method itself and does not
guarantee spin-purity of the wave function.

Concluding, we should say that the SRCC theory combined
with its EOMCC extension is a rather flexible, size-extensive, and
efficient tool for an accurate “black-box” account of electron
correlation.1 As one will see in the next sections, when ordinary
SRCC theory fails, it is usually due to the inability of a single-
determinant reference function to adequately represent the
zeroth-order wave function for the problem under consideration.
This encouraged the extension of the SRCC formalism to
produce efficient size-extensive MRCC methods applicable to a
wide class of chemically interested problems.

2.3. Failure of the Ordinary Single-Reference Coupled-
Cluster Theory

It seems that in practice the deviation of the exponentially
parametrized approximate SRCC wave function from the exact
one is small when (i) the problem has a single-reference character
(eq 2.2.12) and (ii) when the leading (dominating) determinant is
taken as the Fermi vacuum. The former means that the Møller�
Plesset perturbation due to the electron repulsion (1/̂r12) can be
made small (by a proper choice of the Fermi vacuum), while the
latter assures that it is actually made small. Most closed-shell
molecular systems around their equilibrium geometries possess
a single-reference character in the ground electronic state. If
one partitions the Hamiltonian of such SR systems into the
self-consistent-field (SCF) zeroth-order part,Ĥ0, and a perturba-
tion, V̂ , as

Ĥ ¼ Ĥ0 þ V̂ ð2:3:1Þ

Ĥ0 � ∑
i
f̂ ðiÞ ð2:3:2Þ

where f̂ (i)� ĥ(i) + û(i) is a one-electron Fock operator (or other
effective one-electron SCF operator containing the one-electron
part of the Hamiltonian, ĥ(i), and the mean-field term, û(i)),
then the perturbation operator

V̂ � 1
2 ∑i, j

1
r̂ij

� ∑
i
ûðiÞ ð2:3:3Þ

will be relatively “small” (its matrix will have a relatively small
norm as compared to the unperturbed part, Ĥ0). The perturba-
tion operator V̂ represents the irreducible part of the electron
repulsion not captured by the self-consistent field. The presence
of this operator in the Hamiltonian is the origin of the electron
correlation effects that can result in a principal multiconfigurationality
of the wave function. When V̂ is sufficiently “small” the wave
function is dominated by a single SCF determinant, and the
singly and doubly excited cluster amplitudes (or CI coefficients)
adopt relatively small values. Consequently, the total weight of
higher excitations (3-fold, 4-fold, etc.), represented in the CCSD
model solely by nonlinear cluster products, converges quite fast,
such that the deviation of higher-excited wave function compo-
nents from the exact values has negligible consequences on the
accuracy of the calculation. Otherwise, we have a multireference
(MR) problem where V̂ is not small enough and eq 2.2.12 does
not hold. The latter means that there exist two or more leading

determinants with similar large configurational weights (in the
exact wave function):

$ Æxj, Æxjxæ ¼ 1, Æxj0æ ¼ 0 :

jÆxjΨæj > ε, Æ0jΨæ ¼ 1 ð2:3:4Þ
where roughly ε≈ 0.1�0.2 (it is hard to define the exact measure
of “multireference” which depends on the desired accuracy).
Equation 2.3.4 formally reflects the so-called configurational
quasidegeneracy (CQD) of the wave function. CQD is not a rare
phenomenon and routinely emerges when describing bond
breaking/formation processes (chemical reactions), transition
states, excited electronic states (photochemistry, spectroscopy),
radicals/biradicals (combustion chemistry, chemical kinetics),
and other chemical phenomena, as illustrated in Figure 2. In all
these cases, the independent-particle models (self-consistent-
field methods) fail to provide a qualitatively correct (zeroth-
order) description of the problem using a single determinant.
TheMøller�Plesset perturbation V̂ (eq 2.3.3) is no longer small.
Consequently, the values of the singly and doubly excited
amplitudes grow. The CCSD exponential parametrization built
on top of such an inadequate single-determinant reference
function is unable to approximate higher excitations (which are
no longer small in this case) with sufficient accuracy. Such
inaccurate approximations of higher-excited wave function com-
ponents will deteriorate the values of lower-excited components
and, consequently, the correlation energy (the correlation energy
is explicitly dependent on singly and doubly excited amplitudes
only). Obviously, by extending the cluster operator with all triple
(CCSDT), quadruple (CCSDTQ), pentuple (CCSDTQP), etc.
clusters (or CI coefficients in CI methods) one will eventually
account for any perturbation, curing the deficiency of the CCSD
model and correcting the higher-excited components of the wave
function. However, the corresponding approaches have unfavorable
computational demands expressed in powers of the 1e basis set
size, N, as O(N8), O(N10), O(N12), etc., respectively. This pre-
vents suchmethods from being used in practice. For the purposes
of this review, we define practical CC methods as those scaling
no worse than O(N7).

We distinguish two reasons when CQD appears in the wave
function. First, the exact wave function is supposed to have a proper
symmetry (for example, spin and/or spatial symmetry). Depending
on the desired symmetry and orbitals used, a many-body wave

Figure 2. Multireference chemical phenomena.
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functionmay require several highly contributing determinants to be
coupled in a proper spin/spatial-symmetry combination. This is
what we call static electron correlation. It is mostly pertinent to open-
shell and/or spatially degenerate electronic states, like those in
transition-metal atoms, where spin-adaptation of the wave function
is likely to be as important as the correlation, per se.

Another problem appears when one describes bond-breaking
processes using delocalized molecular orbitals (MO), for in-
stance canonical Hartree�Fock orbitals. In general a proper
homolytic separation of interacting chemical fragments requires
a multideterminantal zeroth-order wave function which has en-
ough degrees of freedom to localize electrons on the separating
units. This is what we call nondynamic electron correlation, some-
times called left-right correlation. Finally, the dynamic electron
correlation is the residual correlation part mostly responsible for
keeping electrons apart. Contrary to the nondynamic/static
electron correlation, the effects of the dynamic electron correla-
tion are extremely well captured by the SRCC theory.

Depending on the employed orbitals, the static and nondy-
namic electron correlations can mix. For example, let us consider
a homonuclear single-bond breaking in the ground electronic
state, involving two identical atoms and two valence orbitals.
Based on the localized orbitals, the singlet-state-coupled wave
function in the dissociation limit can be expanded as

jΨæ ¼ ðjðcoreÞχα1χβ2 æ� jðcoreÞχβ1χα2 æÞ þ εjΘæ ð2:3:5Þ
where χk

α/β is a valence atomic α/β-spin�orbital located on
atom k and |Θæ is the residual part of the exact wave function
whose configurational weight in the intermediate normalization
is |ε|2. In our case (in the dissociation limit), the value of |ε|2 is
supposed to be small. One can see that the exact wave function in
eq 2.3.5, expressed in the intermediate normalization, includes
two determinants with the same configurational weight of unity,
such that they couple to a singlet electronic state (minus sign).
This is a pure case of static electron correlation. Now let us pass
from a localized orbital description to delocalized canonical
Hartree�Fock orbitals. In the dissociation limit we will have
the bonding (+) and antibonding (�) valencemolecular orbitals:

ϕþ ¼ 1ffiffiffi
2

p ðχ1 þ χ2Þ, ϕ� ¼ 1ffiffiffi
2

p ðχ1 � χ2Þ ð2:3:6Þ

Now in the dissociation limit the exact wave function expands as

jΨæ ¼ ðjðcoreÞϕαþϕβþæ� jðcoreÞϕα�ϕβ�æÞ þ εjΘæ ð2:3:7Þ
By substituting the molecular orbitals ϕ by the corresponding
linear combinations of the atomic orbitals (eq 2.3.6) and
expanding the Slater determinants, one will obtain the singlet-
coupled wave function of eq 2.3.5. However, the wave function in
eq 2.3.7 is a pure example of nondynamic electron correlation.
Therefore, depending on the orbitals used, one may have “pure”
static correlation or “pure” nondynamic correlation. In the
intermediate region of the bond-breaking coordinate, there is
always mixing between the static and nondynamic electron
correlations. In the equilibrium region, where by a suitable choice
of orbitals one can make a single determinant dominate in the
ground-state wave function, the effects of the nondynamic/static
electron correlation are usually negligible. This is a single-reference
situation where only the dynamic electron correlation is signifi-
cant. When the effects of the nondynamic/static electron corre-
lation are non-negligible, one has a multireference situation.

Let us provide the basic concepts of “multireference quantum
chemistry”:
(1) The presence of the nondynamic/static electron correla-

tion is generally unavoidable when considering the entire
potential energy surface. There exist truly multireference
regions of the potential energy surface which cannot be
reduced to a single-reference character by the aid of orbital
rotations.

(2) The strength of the nondynamic/static electron correla-
tion is proportional to the complexity of the problem.
Complexity is understood as theminimal amount of wave
function parameters (for example, cluster amplitudes)
that can ensure sufficient accuracy of the calculation,
excluding accidental coincidence of the calculated values
with the exact ones.

(3) The extent of mixing between the nondynamic and static
electron correlation depends on the orbitals used. Except
for some special points on the potential energy surface,
such mixing always includes the effect of both.

(4) In general, one cannot always reduce the nondynamic
electron correlation to the static electron correlation by
the aid of orbital rotations, and vice versa.

(5) While it is generally impossible to completely reduce the
multireference problem to a single-reference case with
the aid of orbital rotations, it is always possible to do the
opposite, thus artificially increasing the complexity of the
problem.

In particular, concept 4 implies that special attentionmust be paid
to a description of the intermediate regions of bond-breaking
coordinates, where the correlation problem cannot be re-
duced to a pure spin-coupling task. One should also note that the
static electron correlation is normally attributed to the use of the
determinantal basis set where different determinants must be
coupled in a proper symmetric configuration. Replacing deter-
minants by configuration state functions (CSF) implicitly removes
the necessity of proper spin coupling thus restoring the single-
reference nature of the problem, provided that the nondynamic
electron correlation is negligible.69�73,77,78 Although special
spin-adapted CC codes for open-shells of particular types exist,
we are not aware of any widely used computer implementation of
the spin-adapted CC theory for electronic states of arbitrary spin
symmetry.

One way or another, the presence of CQD separates a set of
leading determinants with similar large weights. Hence, the main
assumption of the ordinary SRCC theory (eq 2.2.12) is violated.
Ordinary SRCC approaches construct the bra-projection space
to comprise not higher than doubly excited determinants with
respect to the Fermi vacuum, primarily because the electronic
Hamiltonian contains at most two-body terms. Indeed double
excitations (excited determinants) appear in the first order
because they are directly coupled with the reference determinant
(SRCC zeroth-order wave function) via the Hamiltonian

$ Æa1a2i1 i2 j : Æa1a2i1 i2 jĤN j0æ 6¼ 0 ð2:3:8Þ
Such directly coupled excitations will be called principal excita-
tions (principal excited determinants). Using a set of independent
variables (amplitudes) the projected Schr€odinger equation is
satisfied in the bra-space spanned by the principal excitations.
The values of residual higher-rank projections (projections
against Æi1i2i3

a1a2a3|, Æi1i2i3i4
a1a2a3a4|, etc., that is, the projections beyond those

explicitly taken care of) are believed to be small, such that
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the obtained solution is supposed to be sufficiently close to the
exact one (full CI). When there are several leading determinants
with similar large weights (in the exact wave function) an ade-
quate zeroth-order wave function must comprise all of them.
Let us call these important determinants, comprising the
zeroth-order wave function, the model (reference) determinants,
and the space spanned by them the model space (or reference
space). For a zeroth-order multidimensional reference function
the first-order interaction space must include all double (and
single, in general) excitations with respect to each reference
determinant, because these excitations are directly coupled with
the zeroth-order reference function (multideterminantal in this
case) via the Hamiltonian:

" μ, $ Æa1a2i1 i2 ðμÞj : Æa1a2i1 i2 ðμÞjĤN jμæ 6¼ 0 ð2:3:9Þ
where μ enumerates different reference determinants Æμ|, and
Æi1i2
a1a2(μ)| is a double excitation on top of Æμ|. We will use Greek
letters to specify reference determinants. Now it becomes clear
why ordinary SRCC approaches often fail in multireference
situations: the ordinary SRCC bra-projection space is essen-
tially unbalanced because the principal excitations from only one
reference determinant are included in it! Hence, it is not the
deficiency of the SRCC ansatz itself. Because of the use of such
an unbalanced bra-space, the weight of higher-rank residual
projections (eq 2.3.9) is no longer small, since many of them are
involved in the first-order interaction space with respect to a
multideterminantal zeroth-order reference function (see
eq 2.3.9):

$ Æxj ∈ fÆa1a2a3i1 i2 i3 ð0Þj ∪ Æa1a2a3a4i1 i2 i3 i4 ð0Þj ∪ :::g :

jÆxjðĤN �ΔEÞeT̂1 þ T̂2 j0æj > ε ð2:3:10Þ
where ε is some threshold dependent on the desired accuracy of
the calculation, and the higher-rank excited determinants,
{Æi1i2i3

a1a2a3(0)| ∪ Æi1i2i3i4
a1a2a3a4(0)| ∪...}, are actually single and double

excitations from other than |0æ reference determinants (they
belong to the first-order interaction space). For those excita-
tions that lie outside the ordinary SRCC bra-projection space
but still belong to the first-order interaction space, “rigid”
disconnected cluster products are unable to reproduce the exact
configurational coefficients with a sufficient accuracy. For example,
for the CCSD approach one has

" Æxð0Þj ∈ fÆ0j ∪ Æa1i1 ð0Þj ∪ Æa1a2i1 i2
ð0Þjg :

Æxð0ÞjðĤN �ΔEÞeT̂1 þ T̂2 j0æ ¼ 0 ð2:3:11Þ

" μ 6¼ 0, $ ÆxðμÞj ∈ fÆμj ∪ Æa1i1 ðμÞj ∪ Æa1a2i1 i2 ðμÞjg :

jÆxðμÞjðĤN �ΔEÞjeT̂1 þ T̂2 j0æj > ε ð2:3:12Þ
where again ε is an empirical threshold distinguishing small and
significant residual values (depends on the desired accuracy of
the calculation) and 0 and μ in parentheses designate reference
determinants (Fermi vacua), while x enumerates excitations on
top of them. Such an unbalanced SRCC description of MR
problems often leads to significant errors and even unphysical
results (qualitatively incorrect results). In particular, this hap-
pens when one is trying to describe the dissociation of the N2

molecule with ordinary methods (Figure 3; notice how drasti-
cally inadequate ordinary methods are)79�82 or homolytic bond
breaking in other molecules79�81 or certain open-shell or/and
excited electronic states (see section 6).

To adjust the configurational coefficients from the multi-
reference first-order interaction space, that is, to satisfy (at least
to a high extent) the projected Schr€odinger equation in the
multireference first-order interaction space, one must properly
modify the CC ansatz.

The essence of any multireference method is to provide a
quantitatively correct description of excitations from the multi-
reference first-order interaction space together with the reference
function.

In other words, the projected Schr€odinger equation must
include all important matrix elements of the Hamiltonian, that is,
the matrix elements which significantly interact with the multi-
dimensional reference function (eq 2.3.9). Once again, it must be
clearly understood that all practical ab initio methods of molecular
electronic structure theory (HF/CC/CI/PT) deal with some
approximate Hamiltonian matrices. One should never forget that
even though the underlying Hamiltonian integrals can be cal-
culated exactly, the matrix can still be far from being complete.
Hence, its eigenvalues can noticeably differ from the exact ones.
However, only the exact eigenvalues are directly related to the
experimental results. In order to ensure the accuracy of some
method in solving some quantum problem, one must meet two
important conditions:
(1) The Hamiltonian matrix used in the method must be close

enough to the exact one. This can only be achieved by
considering a sufficiently largeHilbert space (a linear space
where the quantum problem is being solved).

(2) Provided that the Hamiltonian matrix is sufficiently
accurate, the method must be able to approximate the
eigenvectors of this matrix with a sufficient accuracy.

It is important to realize that a certain methodmight yield very
accurate eigenvectors of the Hamiltonian matrix, but if the
Hamiltonian matrix is not complete enough, the results will be
far from reality. This is where the importance of full CI bench-
marks comes into play.

Let us begin with an abstract multireference CC theoretical
model (MRCCmethod). Contrary to SRCC theoretical models,
an MRCC method has more flexibility. Similarly, in an MRCC
theoretical model one can select the highest excitation rank in the
wave operator (the truncation level), as well as the level of
perturbation theory, used for estimating the values of higher-rank
excitations beyond those explicitly included. However, in addi-
tion to these degrees of freedom, one can also vary the model space
in MRCC methods, more precisely, the dimension and constitu-
tion of the model space (in SRCC theories the model space is
trivially one-dimensional, allowing only a change of orbitals). In
the following discussion, we will insist that it is the multidimen-
sional reference space that distinguishes between SRCC and MRCC
theoretical models. From our point of view this is a more appro-
priate definition of an MRCC method, where the main accent is
put onto the use of a multidimensional zeroth-order (reference)
wave function. Apparently all “genuine” MRCC methods (those
based on the effective Hamiltonian, intermediate Hamiltonian, and
internally contractedMRCC approaches) comply with this defini-
tion. However, there is also a category of CC approaches that
employ the concept of a multidimensional reference space, yet
are operationally based on the SRCC formalism. As we will see
below, such approaches are competitive with the genuineMRCC
techniques, being in some cases superior in accuracy and/or
computationally less expensive. Nonetheless, all existing MRCC
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approaches are not free from certain methodological problems.
Our broad vision of the “multireference coupled cluster” theory
allows us to “synthesize” an ultimate notion of a multireference
problem, and, perhaps, to devise an effective solution to it, using
the strengths of all possible MRCC routes. This is also in line
with the previous paper of one of the authors.83

In order to distinguish between different classes of MRCC
methods, we will call genuine those MRCC approaches (gen-
MRCC) that use nontrivial MR generalizations of an exponential
operator, like that due to Jeziorski andMonkhorst,84 the valence-
universal (VU)CC ans€atze,85�87,188,444�449 or internally contracted
MRCC ans€atze.77,90,188,266,317�321,334,389�391,394,395 MRCCmethods
that are operationally based upon SRCC formalism (or another
alternative MRCC scheme) will be called alternative (alt-MRCC).
We will also consider a special class of alternative CC methods,
which we call adaptive. By construction, an adaptive CCmodel is
generally applicable to both SR and MR problems, although
it might still employ the SRCC formalism. Compared to con-
ventional SRCC andMRCCmodels, the adaptive CC approaches
can (in principle) provide results with an a priori set accuracy (in a
given 1e basis set). However, the computational cost of such
methods can widely vary, depending on the electronic system and
accuracy.

From the historical point of view, MRCC approaches
began to appear in electronic structure theory right after
the SRCC approaches as a generalization for nontrivial
open-shell electronic states.84�89,91�100,188,190,444 The linked
diagram theorem had been reexamined for MRCC methods
(MR-LDT) 84�86,101�104,188,190,202,412,413,451,452 (an attempt
to present an alternative, pure algebraic approach for connec-
tivity analysis can be found in ref 397). The classical MR-LDT is
based on the analysis of the perturbative expansion of the
effective Hamiltonian, since the classical MRCC methods are
based on the effective Hamiltonian formalism (see subsection
3.1). Depending on whether the reference state has the same
number of particles as the target state, two branches of MRCC
theory were initially considered: the Hilbert-space MRCC theory
(particle number is preserved) and the Fock-spaceMRCC theory

(variable particle number). Originally all eigenvalues of the
effective Hamiltonian were supposed to be exact if the wave
operator is complete (multistate theory). If this requirement is
abandoned for some eigenstates or all but one eigenstate, the
intermediate Hamiltonian and the state-specific gen-MRCC theories
are obtained, respectively. In most cases “non-trivial”MR general-
izations of the exponential (CC) wave operator introduce non-
commutative cluster operators, leading to more complex equations
as compared to SRCC (contractions between MRCC cluster
operators become possible). In order to avoid such internal
complexity of the gen-MRCC theory (and for some other reasons
highlighted below), alternative MRCC (alt-MRCC) methods
were suggested, on the basis of the advanced SRCC formalism
[e.g., the single-reference-based MRCC (SRMRCC) theory, the
externally corrected approaches, the method of CC moments, the
pseudovariational CC methods, the orbital-optimized CC ap-
proach, the MR-modified EOMCC and SAC-CI techniques,
CASSCF/GVB inspired CC schemes, etc.]. Predominantly, the
alt-MRCC methods avoid coupling between different electronic
states (state-specific calculation regime). The ideas of the Fock-space
MRCC theory, namely, the use of a universal wave operator
acting on the entire reference function, were recently reborn in
the internally contracted MRCC approaches.

Despite the large effort put into theMRCC development, there
have always been some complications that prohibited the MRCC
theory from becoming a well-established practical approach of
electronic structure theory. Nevertheless, a proper MRCC metho-
dology is absolutely necessary for contemporary quantum chemistry.
It would provide a reliable tool for chemically accurate simulations
of a wide variety of chemical/photochemical/electrochemical
phenomena, and underlying chemical transformations. To provide
a framework for the following discussion, we list desiderata we
have for MRCC methods. An MRCC method should
• provide chemically accurate relative energies (∼1 kcal/mol);
• be size-extensive/size-intensive and size-consistent;
• not exceed O(N7) computational scaling with respect to the
number of correlated orbitals, N, and allow an exploitation
of local techniques for larger systems;

Figure 3. Dissociation of the N2 molecule as described by DFT, MBPT, and CC methods (cc-pVTZ).
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• be invariant to the (inactive) occ�occ and (inactive) virt�
virt orbital rotations and be invariant (or at least insensitive)
to the active�active orbital rotations;

• preserve the symmetry of the wave function (e.g., spin
symmetry);

• provide a well-defined scheme for specifying the reference
space (if applicable);

• naturally reduce to an SRCC approach when the problem is
of SR character;

• provide a tractable scheme for evaluating analytic energy
gradients and calculating molecular properties;

• allow a “black-box” logic for adjusting all parameters of the
method;

• have some internal control of accuracy of a calculation.
We emphasize that without fulfilling the first requirement all

other demands are irrelevant.

3. GENUINE MULTIREFERENCE COUPLED-CLUSTER
THEORY IN HILBERT SPACE

3.1. Multidimensional Model Space
For the following discussion we need to establish a nomen-

clature. First, let us define the following projectors and associated
subspaces of the Hilbert space:
• P̂ = ∑μ|μæÆμ|: a projector onto the model space (reference
space), P. Greek letters will enumerate reference deter-
minants. Determinants from the model space will be also
called internal (internal excitations). The reference function
(zeroth-order wave function) is expanded in this space.

• P̂0 = |0æÆ0|: a projector onto a one-dimensional subspace, P0,
of the model space, P. This subspace is spanned by only one
specific reference determinant, |0æ.

• Q̂ = ∑x|xæÆx|: a projector onto the external space,Q, which is
a space spanned by the determinants formed as excitations
outside the model space, such that the Schr€odinger equation
is projected against the union of the model and external spaces.
x will enumerate components of the external space. In many
cases, the external space is chosen to be the first-order
interaction space, thus involving all single and double
excitations outside the model space. However, in general,
the external space can differ from the first-order interaction
space.

• Q̂ 0 = (P̂ + Q̂ ) � P̂0.
• Q̂ 0 = Î � (P̂ + Q̂ ) = Î � (P̂0 + Q̂ 0): a projector onto the
orthogonal complement space, Q0, that is, the space spanned
by disconnected clusters only (cannot be reached from the
model space by an action of a connected cluster operator).

The determinantal many-electron basis set is assumed to be
orthonormal.

A zeroth-order MRCC wave function is defined solely in the
model (reference) space of dimension M:

jΨð0Þ
k æ ¼ ∑

M

μ¼ 1
Cμ
k jμæ ð3:1:1Þ

where k enumerates different eigenstates of interest, 1 e k e L
with L e M. The full (potentially exact) MRCC wave function,
|Ψkæ, for the kth energy eigenstate is obtained from |Ψk

(0)æ by
the action of some wave operator, Ω̂:

jΨkæ ¼ Ω̂jΨð0Þ
k æ ð3:1:2Þ

In CC theory |Ψkæ is expanded in the entire Hilbert space (in CI
theory the orthogonal-complement space, Q0, is not used). In
many MRCC theories, the intermediate normalization with
respect to the reference space, P, is adopted

ÆΨð0Þ
k jΨkæ ¼ ÆΨð0Þ

k jΩ̂jΨð0Þ
k æ ¼ 1 ð3:1:3Þ

P̂Ω̂ ¼ P̂ ð3:1:4Þ

Ω̂P̂ ¼ Ω̂ ð3:1:5Þ

Ω̂2 ¼ Ω̂ ð3:1:6Þ
that is, the wave operator Ω̂ acts solely on the model space while
excites only outside it (leaving the reference function unchanged).
Classical genuine MRCC approaches are mostly based on
the effective Hamiltonian formalism, such that the Bloch equa-
tion 87,105,106,412 is invoked to determine the wave operator Ω̂:

ĤΩ̂P̂ ¼ Ω̂ĤΩ̂P̂ ð3:1:7Þ

ĤΩ̂P̂ ¼ Ω̂Ĥef f P̂ ð3:1:8Þ

Ĥef f � P̂ĤΩ̂P̂ :

Ĥef f jΨð0Þ
k æ ¼ EkjΨð0Þ

k æ, 1 e k e L ð3:1:9Þ
where Ĥeff is the so-called effective Hamiltonian,87,106 which is
defined solely within the model space (of dimensionM). All L =M
eigenvalues, Ek, are supposed to be equal to selected eigenvalues
of the original Hamiltonian, Ĥ, provided that the wave operator
Ω̂ is exact. Having obtained the wave operator, Ω̂, the eigenvalue
problem is transferred via the effective Hamiltonian from the
entire Hilbert space to the model space only. Diagonalization of
the effective Hamiltonian in the model space yields required
electronic energies, Ek. If in eq 3.1.9 only the first L < M
eigenstates are supposed to be exact when the wave operator is
complete, then the effective Hamiltonian formalism turns into
the intermediate Hamiltonian formalism116,136�138,221,233,413,414

with an ultimate case of the state-specific approach (L = 1).
The Bloch equation for the wave operator is equivalent to the

Schr€odinger equation,87,106 being just more convenient when the
effective Hamiltonian formalism is employed:

ĤjΨkæ ¼ EkjΨkæ, " k ð3:1:10Þ

ĤΩ̂jΨð0Þ
k æ ¼ EkΩ̂jΨð0Þ

k æ, " k ð3:1:11Þ

Ω̂ĤΩ̂jΨð0Þ
k æ ¼ EkΩ̂jΨð0Þ

k æ, " k ð3:1:12Þ

" k : ĤΩ̂jΨð0Þ
k æ ¼ Ω̂ĤΩ̂jΨð0Þ

k æ

� Ω̂Ĥef f jΨð0Þ
k æ S ĤΩ̂P̂ ¼ Ω̂Ĥef f P̂ ð3:1:13Þ

where eq 3.1.12 uses eq 3.1.6, and eq 3.1.13 is obtained by
subtraction of eq 3.1.12 from eq 3.1.11. Usually the Bloch
equation is resolved in the external space as

Q̂ ĤΩ̂P̂ ¼ Q̂ Ω̂ĤΩ̂P̂ ð3:1:14Þ
or, equivalently,

Q̂ ĤΩ̂P̂ ¼ Q̂ Ω̂Ĥef f P̂ ð3:1:15Þ
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with a subsequent diagonalization of the effective Hamiltonian:

" k, " μ : ∑
ν
ðĤef f ÞμνCν

k ¼ EkC
μ
k ð3:1:16Þ

In the following we will highlight only the general algebraic
structure of different MRCC approaches. The detailed equations
can be subsequently derived using well-established diagrammatic
techniques.11

The multidimensional model space P plays a crucial role in
the MRCC theory. We distinguish the following ways for its
construction:
(1) Complete active space (m,n) or CAS(m,n): The model

space is spanned by determinants obtained by all possible
distributions of m electrons among n molecular orbitals.
These electrons and molecular orbitals are called active
(or valence). When the global Fermi vacuum is specified,
the active holes/particles (active orbitals that are occu-
pied/unoccupied in the global Fermi vacuum) will be
designated by capital letters I1, I2, .../A1, A2, ..., respec-
tively. The nonactive (inactive) holes/particles (orbitals
which are occupied/unoccupied in all reference
determinants) will be designated by small roman letters
i1, i2, .../a1, a2,..., respectively. Small italic letters are still
used for general hole/particle ranges. The CAS concept is
graphically illustrated in Figure 4. Usually active orbitals
constitute only a small fraction of the total orbital space
used in a correlated calculation. Physically, the active
(valence) orbitals are those predominantly involved in the
chemical problem under consideration (for example,
bonding/antibonding valence orbitals in the case of bond
breaking).

(2) Incomplete active space (m,n) or IAS(m,n): This model
space is an arbitrary subspace of the CAS(m,n)
model space.

(3) General model space or GMS: This model space can
comprise arbitrary determinants. Any GMS model space
can be viewed as some IAS(m,n) model space. For the
sake of convenience, we distinguish GMS as a model
space that does not need a division of orbitals into active
and inactive.

4) Occupation restricted multiple active spaces or ORMAS: This
model space is constructed by dividing active orbitals into
several groups and imposing specific restrictions on the
orbital occupancy in each group. In contrast to MRCI
and MRPT theories, we are not aware of the use of

ORMAS387 in MRCC theory. ORMAS can also be viewed
as a special variant of IAS.

In earlier works a certain class of IAS model spaces was called
(initially by Lindgren) quasicomplete 86,95 (rarely used now).

3.2. Jeziorski�Monkhorst Ansatz and the State-Universal
Multireference Coupled-Cluster Theory. The Intruder State
Problem

The Jeziorski�Monkhorst (JM) MRCC ansatz84 is the start-
ing point of many genuineHilbert-space multireference (HS-MRCC)
methods in both state-universal (SU) and state-specific (SS)
formulations. In HS-MRCC approaches, the target electronic
states have the same number of particles as all the model space
determinants do. The state-universal (SU) formulation implies a
simultaneous calculation of as many electronic states as the
dimension of the model space (through the full diagonalization
of the effective Hamiltonian), whereas the state-specific (SS)
formulations focus on only one state at a time. In principle, it is
also possible to elaborate an intermediate Hamiltonian formula-
tion, where only several relevant roots are obtained.

The JM wave operator is a natural MR extension of the SRCC
exponential wave operator for a multidimensional reference space

Ω̂ ¼ ∑
μ

eT̂
μ jμæÆμj ð3:2:1Þ

where μ (and Greek letters in general) enumerates model space
determinants. Here the cluster operators T̂μ are defined as regular
excitation operators, but with respect to their own Fermi vacua, |μæ.
The conventional singles-and-doubles (SD) truncation scheme
leads to

Ω̂ ¼ ∑
μ

eT̂
μ
1 þ T̂μ

2 jμæÆμj ð3:2:2Þ

T̂μ
1 ¼ ∑

i1
a1

ta1i1 ðμÞτ̂a1i1 ðμÞ,

T̂μ
2 ¼ 1

2!2! ∑
i1, i2
a1, a2

ta1a2i1 i2
ðμÞτ̂a1a2i1 i2

ðμÞ ð3:2:3Þ

where all the quantities (holes and particles) correspond to their
specific Fermi vacua, |μæ. In such a multivacuum approach, the

Figure 4. Active-orbital-space-based partitioning of orbitals involved in a correlated calculation.
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cluster operators corresponding to different vacua do not commute:

½T̂μ
k , T̂

ν
l � 6¼ 0, μ 6¼ ν ð3:2:4Þ

The external space used for solving the Bloch equation (or,
equivalently, the Schr€odinger equation) is spanned by determi-
nants that can be reached from the model space by an action of
at least one connected T̂μ operator (T̂μ acting on one of the
reference determinants). Projections of the Bloch equation (on
the left) against all determinants from the external space yield a
system of nonlinear equations used to determine the unknown
cluster amplitudes of the JM wave operator84 (amplitudes of all
T̂μ operators):

" k, " Æxj ∈ Q : ÆxjĤð∑
ν
eT̂

ν jνæÆνjÞð∑
μ

Cμ
k jμæÞ

¼ Æxjð∑
ν
eT̂

ν jνæÆνjÞĤef f ð∑
μ

Cμ
k jμæÞ ð3:2:5Þ

where (∑μCk
μ|μæ) � |Ψk

(0)æ is the zeroth-order wave function
(reference function) of the kth electronic state

jΨkæ ¼ ∑
ν
eT̂

ν jνæÆνj
 !

jΨð0Þ
k æ ¼ ∑

ν
Cν
ke

T̂ν jνæ ð3:2:6Þ

AllM eigenstates (M is the dimension of the model space) must
be determined simultaneously, because otherwise the number of
amplitude equations is less than the number of unknown
amplitudes.84 This happens because different determinants from
the external space can be generated inmultiple ways (in general),
by different connected operators T̂μ acting on their own refer-
ence determinants, |μæ. In other words, different T̂μ|μæ vectors
overlap. This is schematically illustrated in Figure 5. If Q̂μ is a
projector associated with the space spanned by all determinants
which can be reached by the excitation operator T̂μ acting on |μæ,
then one can formally write

$ ν 6¼ μ : Q̂ μ � Q̂ ν 6¼ 0 ð3:2:7Þ
In the full CI limit, when all cluster operators T̂μ are complete
(include all possible excitations with respect to their own Fermi
vacua), the JM ansatz containsM timesmore amplitudes than the
dimension of the complete external space (since the JM wave
operator describes M electronic states simultaneously).

The set of equations in eq 3.2.5 constitutes the basis of the
state-universal (SU) MRCC approach84 suggested by Jeziorski
and Monkhorst. Originally, the SU-MRCC method employed
the CAS model space. In order to keep the intermediate normal-
ization (eq 3.1.3) and avoid additional redundancy in the wave
function, all T̂μ operators are prohibited from producing excita-
tions solely within the CAS model space. Hence, the wave
operator Ω̂ always excites outside the reference space when acting
on any reference determinant, thus preserving the intermediate
normalization. A detailed configurational analysis of the SU-
MRCC ansatz can be found in ref 107.

eq 3.2.5 can be further transformed as

" k, " Æxj ∈ Q : ∑
μ

Cμ
k ÆxjĤeT̂

μ jμæ

¼ ∑
μ

Cμ
k ∑

ν
ÆxjeT̂ν jνæĤef f

νμ ð3:2:8Þ

Ĥef f
νμ � ÆνjĤef f jμæ ð3:2:9Þ

Since range(k) = range(μ) = [1,M], one may equate each
individual term in the left sum of eq 3.2.8 to the corresponding
term in the right sum:

" μ, " Æxj ∈ Q μ : ÆxjĤeT̂
μ jμæ ¼ ∑

ν
ÆxjeT̂ν jνæĤef f

νμ

ð3:2:10Þ
Thus, the number of equations is equal to the number of
unknown cluster amplitudes (all M eigenstates are simulta-
neously determined). In practice, for each μ a subset of equations
is formed via projections against all single, double, etc. excitations
(depending on the level of the SU-MRCC approach) with
respect to the corresponding reference determinant |μæ:

" μ, " ÆxðμÞj ∈ fÆa1i1 ðμÞj ∪ Æa1a2i1 i2 ðμÞj ∪ :::g
: ÆxðμÞjĤeT̂

μ jμæ ¼ ∑
ν
ÆxjeT̂ν jνæĤef f

νμ ð3:2:11Þ

where each equation has an associated unknown cluster ampli-
tude from the set {" μ, ti1

a1(μ), ti1i2
a1a2(μ),...}. Having obtained the

amplitudes of the JMwave operator, one can rebuild the effective
Hamiltonian (eq 3.2.9) and diagonalize it as in eq 3.1.16 (the
eigenvalues are the electronic energies). Subsequently, the new
matrix elements Ĥνμ

eff will affect the amplitude equations
(eq 3.2.11), which are to be resolved again. The entire two-step
procedure is repeated until convergence. Depending on the
highest excitation rank in T̂μ, one has SU-MRCCSD,84,93,94,433

SU-MRCCSDT,108 etc. models.
Alternatively, in order to exhibit the connected nature of

equations (eq 3.2.11), one can premultiply both sides by e�T̂μ

:

" μ, " ÆxðμÞj ∈ fÆa1i1 ðμÞj ∪ Æa1a2i1 i2 ðμÞj ∪ :::g :

ÆxðμÞje�T̂μ
ĤeT̂

μ jμæ ¼ ∑
ν
Æxje�T̂μ

eT̂
ν jνæĤef f

νμ ð3:2:12Þ

Equations 3.2.11 and 3.2.12 are equivalent because the e�T̂μ

operator is a pure de-excitation operator when acting on the left.
Hence, it does not change the bra-projection manifold, except
introducing the model space determinants in it. However,

Figure 5. Illustration of the redundancy of the Jeziorski�Monkhorst
ansatz.
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projections against the model space determinants are trivially
satisfied in the SU-MRCC approach:

" Æμj ∈ P, Æλj ∈ P : ÆλjĤeT̂
μ jμæ

¼ ∑
ν
ÆλjeT̂ν jνæĤef f

νμ ð3:2:13Þ

Taking into account the intermediate normalization one has

" Æμj ∈ P, Æλj ∈ P : ÆλjĤeT̂
μ jμæ ¼ Ĥef f

λμ ð3:2:14Þ

" Æμj ∈ P, Æλj ∈ P : ÆλjĤeT̂
μ jμæ

¼ ÆλjĤ ∑
ν
eT̂

ν jνæÆνj
 !

jμæ ¼ ÆλjĤΩ̂jμæ � Ĥef f
λμ

ð3:2:15Þ
proving that eq 3.2.13 is automatically fulfilled.

The left-hand side of eq 3.2.12 is manifestly connected if T̂μ

operators are connected

ÆxðμÞje�T̂μ
ĤeT̂

μ jμæ ¼ ÆxðμÞjðĤeT̂
μÞCjμæ ð3:2:16Þ

where e�T̂μ

ĤeT̂
μ

is the similarity-transformed Hamiltonian of
SRCC theory. In order for the right-hand side of eq 3.2.12 (called
the coupling term) to be connected, the effective HamiltonianĤeff

must be connected. This is true for the CAS-SU-MRCCmethod:84

" μ, " λ : Hef f
λμ ¼ ÆλjĤΩ̂jμæ

¼ ÆλjĤ ∑
ν
eT̂

ν jνæÆνj
 !

jμæ ¼ ÆλjĤeT̂
μ jμæ

¼ Æλje�T̂μ
ĤeT̂

μ jμæ ¼ ÆλjðĤeT̂
μÞCjμæ ð3:2:17Þ

where we used the fact that T̂μ operators are not allowed to
produce excitations solely within the model space (intermediate
normalization condition for the CAS model space). The con-
nectedness of the effective Hamiltonian guarantees the connect-
edness of the entire coupling term, since all nonzero components
of the coupling factor Æx|e�T̂μ

eT̂
ν

|νæ involve active orbitals,
which distinguish |μæ and |νæ [the matrix element Hνμ

eff �
Æν|(ĤeT̂

μ

)C|μæ is explicitly dependent on these active orbitals,
thus getting connected to the coupling factor Æx|e�T̂μ

eT̂
ν

|νæ].84
Therefore, eq 3.2.12 is manifestly connected (if a CAS model
space is used), preserving the connectedness of all cluster
operators T̂μ. Because the CAS model space involves all possible
excitations within the active orbitals (CASFCI space), a diag-
onalization of the connected effective Hamiltonian,Ĥeff, in such
a space simultaneously provides size-extensive energies for M
electronic states, whereM is the dimension of theCASmodel space.
However, in a GMS model space the fact that the effective
Hamiltonian is connected is not sufficient for obtaining rigorously
size-extensive energies because disconnected terms can appear
during the diagonalization of the effective Hamiltonian.95

TheCAS-SU-MRCCmethod can be spin-adapted,69�73,77,78,109

although the complexity of the resulting approach is extreme.
The perturbatively corrected CAS-SU-MRCCSD(T) method110

has been suggested, where perturbative estimates of triply excited
clusters are used to improve the energies. A linear-response approach
has been built on top of the SU-MRCC theory to investigate
molecular properties.111,112 A general theoretical framework for
evaluating MRCC analytic energy gradients, in particular for the

CAS-SU-MRCC approach, has also been formulated,113,114

albeit we are not aware of any commonly accessible computer
implementation of it.

Nevertheless, all the above-mentioned developments have
limited applicability because of an inherent problem of the
CAS-SU-MRCC approach. The CAS model space together with
the intermediate normalization makes the CAS-SU-MRCC
method size-extensive, but at the same time it leads to a severe
problem called the intruder state problem (see refs 115�120 and
also references therein). The essence of the problem can be
briefly explained as follows. When all cluster amplitudes in all T̂μ

operators are zero, the eigenvalues of the effective Hamiltonian
Ĥeff are obtained by a diagonalization of the bare electronic
Hamiltonian Ĥ in the model space, yielding its zeroth-order
spectrum. In the presence of the dynamic electron correlation,
one can expand the cluster amplitudes of all T̂μ as a power series
with respect to the perturbation parameter. Thus, one can
perturbatively construct a wave function in the entire Hilbert
space. The eigenvalues of the effective Hamiltonian Ĥeff also
become functions of the perturbation parameter. The larger the
CAS model space, the greater the chance that the perturbation
will bring together different eigenvalues or even interchange their
order. This does not constitute a problem within the model
space, but this does create severe convergence problems when
some low lying external (intruder) roots (from the first-order
interaction space) approach the highest model-space root. In
such a case the Bloch equation can hardly be converged (some
cluster amplitudes grow large), leaving the entire correlation
problem unsolved. In fact, MRCC methods are usually designed
for treating bond-breaking processes and open-shell/excited
states that require a sufficiently large active space for capturing
the nondynamic/static electron correlations. At the same time, in
such calculations the Hamiltonian eigenvalues are often close to
each other, especially higher roots from the model space and the
subsequent low-lying external roots. This certainly leads to a very
high chance of encountering the intruder state problem when
using the CAS-SU-MRCC method. Roughly speaking, the CAS-
SU-MRCC method is formally well-suited for the problems
where it cannot be practically used due to the loss of conver-
gence. Soon after the appearance of the Jeziorski�Monkhorst
ansatz a partial solution was given by Laidig and Bartlett, who
introduced a decoupled linearized MR-LCCMmethod,88 one of
the first MRCCmethods that exploits the state-specific paradigm
(only one state at a time is calculated).

Yet another essential problem is that the CAS-SU-MRCC
method is often less accurate when calculating SR electronic states.
This seems to be a common drawback of severalMRCCmethods
based on the JM ansatz. The reason will be highlighted below
after discussing other genuine HS-MRCCmethods. Apart from the
major HS-MRCCdevelopments presented below, let usmention
an interesting HS-MRCC approach suggested by Hoffmann and
Khait, based on the unitaryMRCC ansatz and hermitian effective
Hamiltonian.411 Themethod is free of the intruder state problem
and is claimed to properly reduce to the SRCC theory.

3.3. Incomplete-Active-Space and General-Model-Space
State-Universal Coupled-Cluster Theories

The intruder state problem stimulated a search of variations of
the SU-MRCC method which would be free from severe con-
vergence problems. A logical approximation would be to maximally
shrink the size of the model space, removing all determinants of
low importance (together with the corresponding electronic
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states), such that there would be a sufficient “buffer” between the
model space roots and the external roots of the Hamiltonian.
Indeed, SU-MRCC approaches which use incomplete active spaces
or general model spaces (IAS-SU-MRCC/GMS-SU-MRCC) have
been suggested.95�99,121,122 By using an IAS/GMS model space,
one focuses on a simultaneous calculation of some low-lying
Hamiltonian roots from the parental CAS model space, preserving
a sufficient separation from higher roots. Such a practical solution
often circumvents the intruder state problem, but being applied
straightforwardly, it introduces disconnected contributions into
equations and leads to a loss of the rigorous size-extensivity of the
method.49 Indeed, operationally both IAS and GMS are formed
by excluding some selected determinants from the parental CAS
model space and moving them into the external space. Hence, the
dimension of the model space is reduced (as compared to CAS)
while the corresponding cluster amplitudes (for determinants
released from the model space) must be added to the wave
operator in order to keep the MRCC ansatz potentially exact in
the limit. The products of these newly introduced clusters, in
general, can produce excited determinants from the model space

$ jνæ 6¼ jμæ : ÆνjeT̂μ jμæ 6¼ 0 ð3:3:1Þ
violating the intermediate normalization. Consequently, the
effective Hamiltonian inherits disconnected contributions due
to the presence of the following disconnected products: (a)
Æν|Ĥ|λæÆλ|eT̂

μ

|μæ 6¼ 0 and (b) Æν|Ĥ|xæÆx|eT̂
μ

|μæ 6¼ 0 (where |xæ
designates a determinant from the external space that originally was
present in the parental CASmodel space; |xæ is obtained from |μæ
by substituting some active orbitals present in |μæ with other active
orbitals). The presence of the above disconnected products violates
the connectivity and rigorous size-extensivity of the method.

Two major routes to preserve the size-extensivity of the SU-
MRCC approach while using IAS or GMS model spaces have
been suggested. The first route goes back to the papers of
Mukherjee and co-workers98,399 and Meissner et al.95,96 In order
to restore rigorous size-extensivity the intermediate normaliza-
tion of the MRCC wave function should be abandoned,85,98,399

thus introducing a nontrivial overlap matrix

$ Sμν � ÆμjeT̂ν jνæ 6¼ δμν ð3:3:2Þ
and redefining the effective Hamiltonian matrix

Hef f
μν ¼ ∑

λ

Sμλ
�1ÆλjĤeT̂

ν jνæ ð3:3:3Þ

A cluster operator T̂μ is extended by adding internal amplitudes
in it (amplitudes containing solely active indices). These
amplitudes are used to nullify all disconnected products in the
effective Hamiltonian (a and b, shown above). The amount of
these additional internal amplitudes coincides with the number
of distinct disconnected products. Thus, the corresponding
IAS-SU-MRCC equations are still well-defined. Such cancella-
tion of all disconnected products restores the connectedness
of the effective Hamiltonian and the rigorous size-extensivity
of the IAS/GMS-SU-MRCCmethod. Connectivity of the IAS-SU-
MRCC equations was first proven for a special class of IAS model
spaces95 (still keeping T̂μ cluster operators external with respect to
the entire model space), followed by a proof for a general IAS
model space96,98,99 (where the intermediate normalization is
completely abandoned). The resulting GMS-SU-MRCC method
of Meissner/Mukherjee is rigorously size-extensive and satisfies the
generalized extensivity test. However, it is believed that the additional

cluster components required for restoring the connectivity of the
equations may deteriorate the accuracy of the approach.49 Also, as
was pointed out by Berkovic and Kaldor, the IAS-SU-MRCC
approach can lead to degeneracy breaking, where degenerate energy
levels artificially split.123,124 Nevertheless, the IAS-SU-MRCC
methods were successfully tested in some model studies,97,99

although they have not been implemented in any production-level
code. No scheme for evaluating analytic gradients of the IAS/GMS-
SU-MRCC energy was reported so far, albeit the corresponding
techniques exist for the CAS-SU-MRCC approach.113,114

Another route was picked by Paldus and Li, who also
augmented the JM ansatz with additional cluster amplitudes in
order to cancel undesired internal excitations produced by the
original JM wave operator in the GMS model space.121,122

However, Paldus and Li tried to preserve the intermediate
normalization in their GMS-SU-MRCC approach. The corre-
sponding GMS-MRCC ansatz can be expressed as

jΨkæ ¼ ð∑
ν
eĜ

ν
eT̂

ν jνæÆνjÞjΨð0Þ
k æ

¼ ∑
ν
Cν
ke

Ĝν
eT̂

ν jνæ ¼ ∑
ν
Cν
ke

Ĝν þ T̂ν jνæ ð3:3:4Þ

where Ĝν is an additional excitation operator acting solely within
the model space

P̂Ĝνjνæ 6¼ 0, Q̂ Ĝνjνæ ¼ 0 ð3:3:5Þ
As we have pointed out, the standard JM wave operator
(eq 3.2.1), in general, produces internal excitations (reference
space components) when applied with a GMS/IAS model space
(eq 3.3.1). Because cluster operators T̂ν are not allowed to excite
within the model space, these internal excitations are generated
by products of the cluster operators, leading to a loss of
connectivity of the equations. With the aid of the additional
cluster operators Ĝν, one can cancel undesired internal excitations
produced by the wave operator:

" ν, " μ : ÆμjeĜν
eT̂

ν jνæ ¼ δμν ð3:3:6Þ
thus restoring the intermediate normalization metrics. The
amplitudes of Ĝν are defined to be negatives of the coefficients
of the reference determinants produced by internal disconnected
excitations, such that each construct eĜ

ν

eT̂
ν

|νæ does not produce
internal excitations (excitations within the model space). These
additional conditions defining Ĝν are called the C-conditions
(connectivity conditions), since they are intended to make the
GMS-SU-MRCC equations connected and the electronic en-
ergies (rigorously) size-extensive. However, Nooijen et al.49

conjectured that the GMS-SU-MRCC scheme of Paldus and Li
still contains disconnected contributions. Following their argu-
ments one can formally write

Hef f
μν ¼ ÆμjĤeĜ

ν
eT̂

ν jνæ
¼ ÆμjeĜν

eT̂
νðe�T̂ν

e�Ĝν

ĤeĜ
ν

eT̂
νÞjνæ

¼ ÆμjeĜν
eT̂

νðĤeĜ
ν
eT̂

νÞCjνæ ð3:3:7Þ
Thus, for a certain class of GMS model spaces the effective
Hamiltonian Hμν

eff will still contain disconnected products where
(ĤeĜ

ν

eT̂
ν

)C and eĜ
ν

eT̂
ν

are not connected. In other words, in
general the eĜ

ν

eT̂
ν

operator can “excite” the vector (ĤeĜ
ν

eT̂
ν

)C|νæ
back to a particular reference determinant via disconnected
clusters. Indeed, one can check that the C-conditions cancel



198 dx.doi.org/10.1021/cr2001417 |Chem. Rev. 2012, 112, 182–243

Chemical Reviews REVIEW

only the disconnected contributions of type a, Æν|Ĥ|λæÆλ|eT̂
μ

|μæ,
while the disconnected contributions of type b, Æν|Ĥ|xæÆx|eT̂

μ

|μæ
6¼ 0, are kept in the effective Hamiltonian. However, even though
these contributions do violate the generalized extensivity,
the GMS-SU-MRCC approach of Li and Paldus is still
core-extensive397 and size-consistent.49

Moreover, the GMS-SU-MRCCmethod based on theC-condi-
tions was thoroughly tested on model systems as well as on some
small molecules, where it succeeded to provide accurate energies
for the ground and excited MR electronic states.125�128,407 A
perturbative triples correction has been devised for the GMS-SU-
MRCC approach of Li and Paldus.129 In practical calculations
one should be careful in selecting the reference determinants. This is
crucial for both the accuracy and the elimination of the intruder state
problem.Unfortunately, an unambiguous procedure for this purpose
does not exist, although the authors suggested a potentially useful
technique based on the configurational analysis of the CISDwave
function.128 Similarly to the IAS/GMS-SU-MRCC method of
Meissner/Mukherjee, we are not aware of any implemented scheme
for evaluating analytic energy gradients for the GMS-SU-MRCC
approach of Li and Paldus. Otherwise this would significantly
extend the applicability of the method in the studies of PES of the
ground and excited MR electronic states.

Notwithstanding the two major GMS-SU-MRCC schemes
described above, there also exist more approximate IAS-SU-
MRCC methods, for example, the two-determinantal state-
specific MRCCSD method (TD-MRCCSD or, better, 2D-
MRCCSD),110,130 which can be used for calculating open-
shell singlet excited states where the model space consists of
only two degenerate determinants. Such MR problems can be
reduced to two separate SR problems. Because of this
simplification, analytic energy gradients are available for the
2D-MRCCSD method.113

3.4. State-Specific Formulationsof theGenuineMultireference
Coupled-Cluster Theory: Sufficiency Conditions

Yet another route to overcome the intruder state problem
while employing the JM ansatz was discovered. As we have
mentioned above, Laidig and Bartlett attempted to cure the
drawback of the SU-MRCC approach by linearizing and
decoupling the equations,88 thus formally introducing a state-
specificHS-MRCC theory. Later Huba�c with co-workers131�133

and Mukherjee with co-workers134,135 introduced two different
variants of the state-specific (SS) formulation of the HS-MRCC
approach based on the JM ansatz. Contrary to multistate
approaches, state-specific methods focus on only one electronic
state at a time. Usually such a single-root separation circum-
vents the intruder state problem. A state-specific formulation
can be viewed as a particular case of the intermediate Hamilto-
nian technique, where only the first few roots are supposed to be
exact in the limit while other roots serve for “buffering” and
getting rid of the intruder states by shifting them away.116 This
will be described in more detail in section 4 when discussing the
Fock-space methods, where the intermediate Hamiltonian
technique136�138 has been very fruitful for a long time. A pilot
application of the intermediate Hamiltonian technique to the
HS-MRCC approach was recently reported by Eliav et al.139

In this subsection we will focus on the state-specific formula-
tion, where only one root is supposed to be exact in the limit
(the electronic state of interest). All other roots are just
byproducts of the calculation, serving to maintain a sufficient
separation of the root of interest.

As we have pointed out, the exact JM ansatz84 (with complete
cluster operators) involves M times more variables than the
dimension of the external space, M being the dimension of the
model space. In the SU-MRCC formalism, this redundancy is
naturally resolved by a simultaneous consideration of M elec-
tronic states. However, the state-specific formulation considers
only one state at a time, thus introducing to the redundancy
problem (the number of equations is less than the number of
unknown cluster amplitudes). In general, the redundancy
problem is resolved via appropriate sufficiency conditions, which
make the number of equations equal to the number of
variables.131�135,140 In the next discussion, we will abandon
the classical way of deriving state-specific HS-MRCC equations.
Instead, we will follow the elegant grouping approach introduced
by Kong141 (which also covers the classical derivation). The
approach is based on different grouping of the terms obtained
from the projected Schr€odinger equation, leading to four
different HS-MRCC theories: SS Brillouin�Wigner (BW)
MRCC,131�133,140 multistate SU-MRCC,84 SS Mukherjee-
MRCC,134,135,142�144 and the so-called H2E2-MRCC variant.141

The latter approach is closely related (though not equivalent)
to the single-root sr-MRCC method135,400,401 of Mahapatra et al.
Following the work of Hanrath,145 this unified way of deriving
genuine HS-MRCC methods (based on the JM ansatz) will also
exhibit their serious drawback (which leads to less accurate
description of SR cases, in particular). Note that the SU-MRCC
method discussed above can also be derived in this way. Another
interesting (but less general) unified view on different HS-MRCC
theories and their interrelationship was demonstrated by Pittner.140

In accordance with the grouping approach,141 one starts from
the Schr€odinger equation with a wave function based upon the
JM ansatz (eq 3.2.6)

∑
μ
ðĤ � EkÞCμ

k e
T̂μ jμæ ¼ 0 ð3:4:1Þ

where Ek is the energy of the kth electronic state. Projecting
eq 3.4.1 against the reference determinants as well as the
determinants from the external space, two sets of equations can
be obtained:

" Æνj ∈ P : ∑
μ

ÆνjðĤ � EkÞCμ
k e

T̂μ jμæ ¼ 0 ð3:4:2Þ

" Æxj ∈ Q : ∑
μ

ÆxjðĤ � EkÞCμ
k e

T̂μ jμæ ¼ 0 ð3:4:3Þ

where P is the reference (model) space whileQ is the external space
(see subsection 3.1). The CAS model space and the intermediate
normalization are assumed

" μ, " ν : ÆνjeT̂μ jμæ ¼ δνμ ð3:4:4Þ
where δνμ is the Kronecker delta. The first set of equations
(eq 3.4.2) together with eq 3.4.4 leads to the already known
eigenvalue problem for the effective Hamiltonian, Ĥeff

" k, " ν : ∑
μ

Cμ
k ÆνjĤeT̂

μ jμæ ¼ Ek ∑
μ

Cμ
kδνμ

ð3:4:5Þ

" k, " ν : ∑
μ

Cμ
kH

ef f
νμ ¼ EkC

ν
k ð3:4:6Þ
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where the effective Hamiltonian is defined as before:

Hef f
νμ ¼ ÆνjĤeT̂

μ jμæ ¼ Æνje�T̂μ
ĤeT̂

μ jμæ ¼ ÆνjðĤeT̂
μÞCjμæ
ð3:4:7Þ

Equation 3.4.7 assumes the CAS intermediate normalization
condition (T̂μ operators always excite outside the model space).
A diagonalization of the effective Hamiltonian yields required
electronic energies (from which only one root might be re-
levant). However, in order to compute the effective Hamiltonian,
Ĥeff, one must solve eq 3.4.3, which can be rewritten as

" k, " Æxj ∈ Q : ∑
μ

Cμ
k ÆxjĤeT̂

μ jμæ ¼ ∑
μ

EkC
μ
k ÆxjeT̂

μ jμæ

ð3:4:8Þ

Now each side of eq 3.4.8 can be reexpressed at least in two
different ways leading to

left-hand side
1. ∑μCk

μÆx|ĤeT̂
μ

|μæ;
2. ∑μ(Ck

μÆx|eT̂
μ

Q̂ e�T̂μ

ĤeT̂
μ

|μæ + ∑νCk
νÆx|eT̂

ν

|μæHμν
eff) (the resolu-

tion of identitywas inserted, eT̂
μ

Îe�T̂μ

= eT̂
μ

P̂e�T̂μ

+ eT̂
μ

Q̂ e�T̂μ

,

assuming completeness of P x Q; in the second term the
summation indices, μ and ν, were replaced, μ T ν);

right-hand side
1. ∑μEkCk

μÆx|eT̂
μ

|μæ;
2. ∑μCk

μ∑νÆx|eT̂
ν

|νæHνμ
eff (eq 3.4.6 and renaming of summation

indices, μ T ν).

Correspondingly, four different combinations lead to four
different gen-HS-MRCC theories. Because of the redundancy
problem, when equating each variant of the left-hand side (lhs) to
each variant of the right-hand side (rhs), the outer sums are split
such that each component in the lhs outer sum is to be equal to
the corresponding component in the rhs outer sum. Hence, we
end up with
(1) The state-specific Brillouin�Wigner HS-MRCC method

(BW-MRCC):

" μ, " Æxj ∈ Q μ :

ÆxjĤeT̂
μ jμæ ¼ EkÆxjeT̂μ jμæ ð3:4:9Þ

(2) The multistate SU-MRCC method (linked form):

" μ, " Æxj ∈ Q μ :

ÆxjĤeT̂
μ jμæ ¼ ∑

ν
ÆxjeT̂ν jνæHef f

νμ ð3:4:10Þ

(3) The state-specific Mukherjee HS-MRCC method (Mk-
MRCC) (linked form):

" μ, " Æxj ∈ Q μ :

ÆxjeT̂μ

Q̂e�T̂μ

ĤeT̂
μ jμæCμ

k þ ∑
ν
ÆxjeT̂ν jμæHef f

μνC
ν
k

¼ EkÆxjeT̂μ jμæCμ
k ð3:4:11Þ

(4) The state-specific H2E2-MRCC method:

" μ, " Æxj ∈ Q μ :

ÆxjeT̂μ

Q̂ e�T̂μ

ĤeT̂
μ jμæCμ

k þ ∑
ν
ÆxjeT̂ν jμæHef f

μνC
ν
k

¼ Cμ
k ∑

ν
ÆxjeT̂ν jνæHef f

νμ ð3:4:12Þ

In all the equations Qμ designates an excitation subspace of
the external space, Q, which consists of singles, doubles, etc.
(up to the highest excitation rank in the cluster operator T̂μ)
that can be reached by an action of T̂μ on |μæ. Hence, the
number of equations is always equal to the number of unknown
cluster amplitudes, because each μth subset of cluster amplitudes
(T̂μ) is determined from the corresponding μth subset of
projected equations, where each equation is associated with a
particular cluster amplitude. Note that the working equations of
state-specific HS-MRCC approaches explicitly depend on the
eigenstate of interest (via index k). This also requires a self-
consistent procedure in order to solve the equations.

Equations 3.4.9�3.4.12 are obtained by direct projections
against determinants from the external subspace. In order to
transform the equations to the canonical form and exhibit
connectivity of eqs 3.4.10 and 3.4.11, one can replace direct
projections by their analogs premultiplied with e�T̂μ

:

ÆxðμÞj f ÆxðμÞje�T̂μ
, " μ, " xðμÞ ð3:4:13Þ

Usually such a transformation leads to an equivalent set of
equations when the projection space is closed under de-excita-
tions. In our case, this transformation extends the original
projection space, Qμ, to include the model space determinants
(determinants from P):

$ μ, $ fÆxj ∈ Q μ, jνæ ∈ Pg : Æxje�T̂μ jνæ 6¼ 0

ð3:4:14Þ
Thus, we can apply this transformation only to those HS-
MRCC methods for which the working equations (eqs 3.4.9�
3.4.12) are also satisfied in the reference space, P. Inserting
Æλ| ∈ P instead of Æx| ∈ Qμ, one obtains the following
restrictions:
(1) BW-MRCC (very restrictive condition):

Hef f
λμ ¼ Ekδλμ ð3:4:15Þ

(2) SU-MRCC (trivial):

Hef f
λμ ¼ Hef f

λμ ð3:4:16Þ
(3) Mk-MRCC (trivial):

∑
μ

Hef f
λμC

μ
k ¼ EkC

λ
k ð3:4:17Þ

(4) H2E2-MRCC (restrictive; satisfied in the limit of an
infinite number of electrons):

μ ¼ λ : ∑
ν
Hef f

λν C
ν
k ¼ HλλCλ

k ¼ EkCλ
k

μ 6¼ λ : Hef f
λμ ¼ 0

8><
>:
w diagonal Hef f

λμ ð3:4:18Þ
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One can see that the BW-MRCC approach cannot satisfy
eq 3.4.15. Indeed, it requires the effective Hamiltonian to be
essentially a scalar, with all diagonal elements equal to the
energy of the calculated electronic state, Ek. Hence, one cannot
apply Æx(μ)| f Æx(μ)|e�T̂μ

transformation in the BW-MRCC
theory, unless the effective Hamiltonian and all reference
determinants are exactly degenerate. In this case, one can
formally transform eq 3.4.9 to

"μ, " xj∈ Q μ : xje�T̂μ
ĤeT̂

μ jμ
D E

¼ 0
D

" μ : Ek ¼ μje�T̂μ
ĤeT̂

μ jμ
D E

ð3:4:19Þ
eq 3.4.19 is simply a set of SRCC equations, that is, there is no
coupling term at all. In general, BW-MRCC equations (eq 3.4.9)
are coupled through the energy of the calculated electronic state
that makes them unlinked and the BW-MRCC method not size-
extensive. Approximate size-extensivity correction schemes have
been suggested and quite successfully tested on model sys-
tems.140,146�149 The full-triples as well as approximate and
perturbative-triples (T) versions of the BW-MRCC theory have
been reported.150�152 The relative simplicity of the BW-MRCC
equations has made analytic energy gradients readily available.114

Nevertheless, the unlinked nature of the BW-MRCC equations
makes the method noticeably less competitive, especially when
proceeding to larger chemical systems.

In the case of the H2E2-MRCC approach, in order for the
Æx(μ)| f Æx(μ)|e�T̂μ

transformation to be legitimate, the
effective Hamiltonian must be diagonal. Thus, in general we cannot
formulate a manifestly connected version of the H2E2-MRCC
approach. However, a manifestly connected version can be
postulated by using appropriate sufficiency conditions. The
resulting SS-HS-MRCC approach is called sr-MRCC (“sr” stands
for “single-root”).135,400,401 The manifestly connected sr-MRCC
equations are given below. Remarkably, the two HS-MRCC
approaches (H2E2-MRCC and sr-MRCC) become virtually
equivalent when the number of electrons in the system is
sufficiently large.397 This happens because only diagonal ele-
ments of the effective Hamiltonian are supposed to grow linearly
with the number of electrons in the system (the off-diagonal
elements should stay bounded397). Hence, at some point, the
effective Hamiltonian will become sufficiently diagonal-dominated,
such that the results of both the H2E2-MRCC and sr-MRCC
methods will virtually coincide.

Let us summarize the corresponding connected equations
wherever possible:
(1) Brillouin�Wigner MRCC method (BW-MRCC): not

applicable.
(2) SU-MRCC method (connected form):

" μ, " Æxj ∈ Q μ :

Æxje�T̂μ

ĤeT̂
μ jμæ ¼ ∑

ν
Æxje�T̂μ

eT̂
ν jνæHef f

νμ

ð3:4:20Þ

(3) MukherjeeMRCCmethod(Mk-MRCC) (connected form):

" μ, " Æxj ∈ Q μ :

Æxje�T̂μ
ĤeT̂

μ jμæCμ
k þ ∑

ν
Æxje�T̂μ

eT̂
ν jμæHef f

μνC
ν
k

¼ 0 ð3:4:21Þ

(4) sr-MRCC method (or H2E2-MRCC method with a
diagonal Hνμ

eff):

" μ, " Æxj ∈ Q μ :

Æxje�T̂μ
ĤeT̂

μ jμæCμ
k þ ∑

ν
Æxje�T̂μ

eT̂
ν jμæHef f

μνC
ν
k

¼ Cμ
k ∑

ν
Æxje�T̂μ

eT̂
ν jνæHef f

νμ ð3:4:22Þ

It was shown that both coupling factors, Æx|e�T̂μ

eT̂
ν

|νæ and
Æx|e�T̂μ

eT̂
ν

|μæ, are connected with the effective Hamiltonian
(via common active indices), and the entire coupling terms are
connected if the CAS model space is used.84,134,135 Hence, the
amplitude equations for all three CAS-HS-MRCC theories (SU-
MRCC, Mk-MRCC, and sr-MRCC) are manifestly connected,
keeping the methods rigorously size-extensive. The methods also
provide a size-consistent description of MR problems when the
orbitals are localized on noninteracting fragments.

A generalization of theMk-MRCC and sr-MRCCmethods for
IAS/GMS model spaces can be achieved either via abandon-
ing the intermediate normalization443 or via the use of the
C-conditions,408 in an analogous way as in the GMS-SU-MRCC
approach (bearing in mind that the latter route is only core-
extensive).

Due to recent extensive works of Evangelista et al.,108,153�156

Pittner and co-workers,402,403 and Mukherjee with collabo-
rators,157,404�406 theMk-MRCCmethodwas thoroughly studied
(both theoretically and practically). Both Mk-MRCCSD134,135

and Mk-MRCCSDT154,404 approaches as well as their approx-
imate variants154,405,406 have been explored. Two perturbatively
corrected Mk-MRCCSD(T) schemes were suggested by Evan-
gelista et al.156 and Pittner and co-workers.158,406 A simplification
of the coupling term was elaborated under the name the
uncoupled SS-Mk-MRCC approach.402,405,406 A rigorously spin-
adapted Mk-MRCC approach has been formulated by Datta
andMukherjee.403 A general theory of analytic gradients based on
the Lagrangian technique113 is available for the Mk-MRCC
approach.155 Techniques for calculatingmolecular propertieswere
also suggested.142�144 However, in practice most of the Mk-
MRCC calculations were limited to a small CAS(2,2) model
space (the analytic energy gradients are still available only for
the CAS(2,2)-Mk-MRCCSD approach).

A recent general-order implementation of the Mk-MRCC
approach reported by Das et al.157 exhibited significant errors
produced by the Mk-MRCCSD approach for larger CAS
model spaces when delocalized orbitals were used. Also,
convergence problems were encountered when employing the
Mk-MRCC scheme, especially for SR electronic states (where
many reference determinants lose their configurational
weight)157 and for excited electronic states.128 Although the
reference determinants are treated on the same footing, the Mk-
MRCCmethod (as well as SU-MRCC, BW-MRCC, sr-MRCC,
and H2E2-MRCC) lacks any invariance with respect to active
orbital rotations.159,388 Actually, the Mk-MRCCSD approach is
rather sensitive to the choice of active orbitals, where a poor
choice can lead to a noticeable accuracy loss157,159 (despite
having the reference space formally unchanged). All these
disturbing features point to the necessity of an essential further
improvement of the Mk-MRCC scheme. Quite surprisingly,
an approximate version of the Mk-MRCCSD method in the
form of the MR-CEPA approach160 produced noticeably
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better results,157,160 although most likely this can be attrib-
uted to some accidental error compensation (fortunately or
unfortunately, this phenomenon occurs quite often in quantum
chemistry).

3.5. The “Proper Residual” Problem and the MRexpT Multi-
reference Coupled-Cluster Method

It is believed that the above-mentioned deficiencies of the
Mk-MRCCSD approach mostly come from the so-called “prop-
er residual” problem, as first pointed out by Hanrath145 and later
Kong.141 Actually, this problem is shared by all aforementioned
HS-MRCC methods based on the JM ansatz. It turns out that
the above routes of resolving the redundancy problem
(sufficiency conditions) have a necessary consequence of having
numerous residual components of the projected Schr€odinger
equation that are not equal to zero (Schr€odinger is not satisfied).
Indeed, eqs 3.4.9�3.4.12, which resolve the redundancy pro-
blem and define four different HS-MRCC approaches, are
solved in the bra-space, Qμ, consisting of all singles, doubles,
etc. excitations, up to the maximal excitation rank present in the
cluster operator T̂μ with respect to the reference determinant |μæ.
But Qμ is only a subspace of the external space Q, which is the
union of all Qμ:

Q μ ⊂ Q , " μ ð3:5:1Þ

Q ¼ ∪μ Q
μ ð3:5:2Þ

Consequently, the basic projected Schr€odinger equation
(eq 3.4.3) is rigorously satisfied only in the subspace formed
by an intersection of all Qμ:

" Æxj ∈ ∩μ Q
μ : ∑

μ
Cμ
k ÆxjðĤ � EkÞeT̂μ jμæ ¼ 0

ð3:5:3Þ

$ Æxj ∈ Q \ ∩μ Q
μ : ∑

μ
Cμ
k ÆxjðĤ � EkÞeT̂μ jμæ 6¼ 0

ð3:5:4Þ
We will adopt the name “proper residual condition” given to
eq 3.5.3 in ref 141. Now we should stress that the dimension
of the union-space Q = ∪μ Qμ increases (roughly) linearly
with the dimension of the model space, whereas the inter-
section-space QI = ∩μ Q

μ very soon becomes empty! Indeed, all
aforementioned HS-MRCC approaches with cluster opera-
tors restricted to singles and doubles have an empty “proper
residual” subspace,

QI ¼ ∩μ Q
μ ð3:5:5Þ

when the model space involves a pair of reference determi-
nants, one of which is higher than 3-fold excited with respect to
the other. For example, if a moderate-size CAS(4,4) model
space is employed in any of the above HS-MRCCSD ap-
proaches (such a model space is used to dissociate the H2O
molecule), the “proper residual” subspace is empty. In such
cases the Schr€odinger equation is not satisfied at all (none of its
external projections is satisfied). This explains why the most
successful applications of the Mk-MRCCSD method were

limited to the CAS(2,2) model space and why one observes a
poor behavior of the method when describing multiple-bond
breaking processes (where the model space is CAS(4,4) or
larger; see section 6). Let us note again that the “proper
residual” problem equally applies to all aforementioned
MRCC approaches: BW-MRCC, CAS-SU-MRCC, IAS-SU-
MRCC, GMS-SU-MRCC, Mk-MRCC, sr-MRCC, and H2E2-
MRCC.

In order to restore a nonempty “proper residual” subspace,
one must add higher-excited cluster operators into the JM ansatz
(triples at least). Apparently the method will rapidly become
impractical. Moreover, the majority of triple and higher
excitations lie outside the first-order interaction space when the
Hamiltonian contains no higher than two-body terms. Another
possibility for a rigorous alleviation of the “proper residual”
problem is to employ the SRMRCC ideology161�168 (see
subsection 5.1) and symmetrize each subspace Qμ built on
top of each reference determinant |μæ, such that " μ: Qμ =
Q.159,428 However, the computational cost of the resulting
method is high.

The above considerations have led to a radically different
route of resolving the redundancy problem introduced by
Hanrath.145 In his MRexpT method,145 the redundancy
problem is resolved in a natural way by eliminating redun-
dant cluster amplitudes. This is done by reindexing the cluster
amplitudes and uniquely associating them with the cor-
responding projection-space determinants, regardless of
the reference determinant (an amplitude is marked with
indices of the determinant it corresponds to). Thus, origin-
ally distinct cluster amplitudes, which are associated with the
same excited determinant but defined with respect to differ-
ent reference determinants, are grouped together. In order to
keep the wave function potentially exact, special phase
factors, ϕ(z) = e�i arg z, must be included in the MRexpT
ansatz:

jΨkæ ¼ ∑
μ

Cμ
k exp ϕðCμ

k Þ ∑
τ̂iðμÞ ∈ T̂μ

tτ̂iðμÞjμæτ̂iðμÞ
0
@

1
Ajμæ

ð3:5:6Þ
where τ̂i(μ) is an elementary excitation operator (it creates an
excited determinant τ̂i(μ)|μæ whose indices are used to mark the
associated amplitude tτ̂i (μ)|μæ). The MRexpT working equations
are obtained by projecting the Schr€odinger equation with the
above wave function against the union of the model, P, and
external, Q, spaces:

" Æνj ∈ P :

Æνj ∑
μ

Cμ
k ðĤ � EkÞ exp ϕðCμ

k Þ ∑
τ̂iðμÞ ∈ T̂μ

tτ̂iðμÞjμæτ̂iðμÞ
0
@

1
Ajμæ ¼ 0

ð3:5:7Þ

" Æxj ∈ Q :

Æxj ∑
μ

Cμ
k ðĤ � EkÞ exp ϕðCμ

k Þ ∑
τ̂iðμÞ ∈ T̂μ

tτ̂iðμÞjμæτ̂iðμÞ
0
@

1
Ajμæ ¼ 0

ð3:5:8Þ
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The MRexpT equations are state-specific (explicitly dependent on
the calculated state via the index k). In the MRexpT method, the
model space, P, is CAS, leading to the standard intermediate
normalization of the wave function. The MRexpT method is
free of intruder states, potentially exact in the limit, provides a
size-consistent description of the problem, and it does satisfy
the projected Schr€odinger equation in the union of the model and
external spaces (as it should). The latter property resulted in highly
accurate results demonstrated in model calculations of MR ground
and excited electronic states.145,169�172 Remarkably the approach
gives an accurate description of SR cases as well. Unfortu-
nately, the method is not rigorously size-extensive for valence
electrons, being only core-extensive.145,172 From the practical
point of view, the operational scaling of the MRexpT approach
with singles and doubles is still O(N6), although the prefactor
can be large (it rapidly grows with the size of the active space).

3.6. Multideterminantal Vacuum States and Internally Con-
tracted Multireference Coupled-Cluster Approaches

Despite treating all reference determinants on the same
footing, all above HS-MRCC approaches are not invariant with
respect to linear transformations in the active orbital space
(active-orbital rotations).159,388 This problem seems to have
significant numerical consequences for the Mk-MRCCSD
method157,159 and, presumably, for other HS-MRCCSD
approaches suffering from the “proper residual” problem
(addition of triples provides a remedy, but it is computationally
expensive). However, for those HS-MRCCSD methods that
satisfy the projected Schr€odinger equation, it is hard to believe
that active-orbital rotations can lead to significant discrepancies.
Moreover, the requirement of invariance with respect to active-
orbital rotations does not make sense for the GMS-SU-MRCC
approach, where the active orbitals are not a necessary construct.
Nevertheless, it is esthetically (and often practically) attractive to
have active-orbital invariance in an HS-MRCC method.

The lack of the active-orbital invariance in HS-MRCC
methods, in particular, in the Mk-MRCC approach, was origin-
ally attributed to the “proper residual” problem.309 However,
Evangelista and Gauss159 numerically and Kong388 theoretically
proved that there is a fundamental inability of the JM ansatz
to comply with the property of active-orbital invariance.
The reason is that each cluster operator T̂μ is still assigned its
own vacuum, |μæ. In order to abandon such an individual
assignment of cluster operators, Evangelista and Gauss later
implemented the internally contracted ic-MRCC approach,389

following the ideas of Mukherjee and co-workers.391 Even
earlier Chan and co-workers suggested an internally contracted
MRCC approach based on the canonical transformation of
the Hamiltonian (CT).317�321 Contrary to other HS-MRCC
schemes, in the internally contracted MRCC methods a
single cluster operator creates excitations on top of a multi-
determinantal vacuum state treated as a whole (before we had
several distinct vacua with their own cluster operators).
Development of such an approach had become feasible due
to the existence of the extended and generalized Wick’s
theorems which (in particular) prescribe normal ordering
for multideterminantal vacuum states.392�394 For the sake of
convenience, let us “violate” the chronological order and
describe the most recent ic-MRCC development first (the
method is quite promising).

In the ic-MRCC method,389 the reference function is generated
in the usual way, as a linear combination of determinants obtained

by all possible distributions of active electrons among the active
orbitals (CAS reference):

jΨð0Þæ ¼ ∑
μ

Cμjμæ ¼ ∑
μ

Cμμ̂þjcoreæ ð3:6:1Þ

where |coreæ is the core vacuum with all active orbitals empty, and
μ̂+ is a string of active creators, which generate the reference
determinant |μæ by acting on the core vacuum. Since the
internally contracted MRCC methods are state-specific, we omit
the state index. In the ic-MRCC cluster ansatz

jΨæ ¼ eT̂ jΨð0Þæ ¼ eT̂ ∑
μ

Cμjμæ ¼ eT̂ ∑
μ

Cμμ̂þjcoreæ

ð3:6:2Þ
the cluster operator has the following structure:

T̂ ¼ ∑
M

m¼ 1
T̂m

¼ ∑
M

m¼ 1

1
m!m! ∑

a1:::am

i1:::im

Ta̅1:::a̅m
̅ i1:::̅im âþ1 :::â

þ
m î

�
m :::̂i

�
1

0
BBBBBBB@

1
CCCCCCCA

ð3:6:3Þ

where T̂m � 1/(m!m!) ∑
a1:::am

i1:::im

Ta̅1:::a̅m
̅ i1:::̅im âþ1 :::â

þ
m î

�
m :::̂i

�
1 , ik indices

run over the union of the core and active orbital ranges, ak indices
run over the union of the virtual and active orbital ranges (see
Figure 4), and M defines the truncation level in the cluster
operator. The cluster amplitudes containing solely active indices
are permanently set to zero. Because of the overlap of covariant
and contravariant indices, the corresponding cluster excitation
operators do not commute. Such a structure of the cluster
operator is also pertinent to the Fock-space MRCC theory
(section 4). Actually, a universal cluster operator first appeared
within the Fock-space framework, represented by works
of Mukherjee and co-workers,102,188,190 Lindgren,86,87 and
Lindgren and Mukherjee,85 whereas the size-extensivity of the
ic-MRCC approach as well as the resolution of linear dependen-
cies (see below) were first studied by Mahapatra et al.391

The “preliminary” ic-MRCC amplitude and energy equations
read as

ÆΨð0ÞjX̂þ
k e

�T̂ ĤeT̂ jΨð0Þæ ¼ 0, " k ð3:6:4Þ

E ¼ ÆΨð0Þje�T̂ ĤeT̂ jΨð0Þæ ð3:6:5Þ

where ÆΨ(0)|X̂k
+ is some linear combination of determinants

from the external space, Q, created by a certain elementary
excitation operator, X̂k

+, acting on the multideterminantal re-
ference, ÆΨ(0)|. The manifold of excitation operators {X̂k

+," k}
generates the bra-space conjugated to the ket-space generated
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by T̂ acting on |Ψ(0)æ. Despite some formal similarity to the
SRCC equations, there are two principal differences:
• The ic-MRCC ansatz is overdetermined (overparameterized):
the amount of cluster amplitudes (or, equivalently, the
amount of distinct X̂k

+) exceeds the dimension of the
space generated by the components of T̂ acting on |Ψ(0)æ
(or {X̂k

+, " k} acting on ÆΨ(0)|).
• The commutator expansion of e�T̂ĤeT̂ generally involves
higher than 4-fold commutators due to the noncommutativity
of the excitation operators that constitute T̂. If M is the
highest excitation rank in a truncated ic-MRCC cluster
ansatz (eq 3.6.3), then up to (4 + 2M)-fold commutators
appear in amplitude equations.90 The energy expression in
eq 3.6.5 includes up to 4-fold commutators. In order for such
terminations to happen, the T̂ operator is not allowed to
excite within the model (reference) space.

The first problem can be resolved via the singular value
decomposition (SVD) of the metric matrix389,391

Skl ¼ ÆΨð0ÞjX̂þ
k X̂ljΨð0Þæ ð3:6:6Þ

Then a linear independent set of amplitude (residual) equations
is formed by taking proper linear independent combinations of
the original residuals given by eq 3.6.4. The original amplitude
vector (vector of unknowns) is transformed (reduced) accord-
ingly. However, technically, all original residuals have to be
evaluated and all original cluster amplitudes are in use. Note
that the metric matrix depends on the model space compo-
nents, Cμ, of the wave function. Very recently Hanauer and
K€ohn recognized that linear dependencies can be removed in
multiple ways.90 Interestingly, they have concluded that only
one way leads to an ic-MRCC approach which provides a size-
consistent description of quantum chemical problems (called by
the authors ic-MRCC-D). Other variants generally violate size-
consistency due to the presence of specific spectator amplitudes
[cluster amplitudes containing the same (active) index in both
covariant and contravariant rows] which turned out to be
disconnected.90

The second problem (the presence of higher-rank commu-
tators) leads to rather complex formulas as compared to an
analogous SRCC approximation (many more diagrams; diagrams
contain more operators). Nevertheless, the use of an automated
formula generator has confirmed the O(N6) computational
scaling of the ic-MRCCSD approach,90 although the prefactor
is significantly larger than in the SRCC case. Moreover, the
prefactor rapidly grows with the size of the active orbital space
defining the CAS model space. As a practical solution, one can
neglect some higher-rank commutators.90,389 Provided that
the reference function is a good zeroth-order approximation
to the exact wave function, the cluster amplitudes should
be relatively small, thus justifying a truncation of the commu-
tator series.

In the ic-MRCCmethod the reference coefficients, Cμ, can be
iteratively relaxed by solving the eigenvalue problem in the
reference space, P:

∑
ν
Æμje�T̂ĤeT̂ jνæCν ¼ ECμ, " μ ð3:6:7Þ

However, by modifying the model space components of the
wave function, one also changes the metrics in eq 3.6.6, such
that a new linear transformation of the residuals is required. By
using proper iterative schemes, both ground and excited

electronic states are accessible. Moreover, one can write a
Lagrangian for the ic-MRCC approach, making analytic energy
gradients available (in principle).90 Preliminary tests have
shown the ability of the method to provide accurate potential
energy surfaces for small molecules.90,389 The ic-MRCCSD
energies are of the same (high) quality as those produced by the
MRexpT-SD145,169�172 and CASCCSD82,168,246�253 methods.
At the same time, the amount of variables in the ic-MRCCSD
method does not grow so fast with the size of the CAS model
space (a big advantage of the internally contracted ans€atze).
However, the energy produced by internally contracted
MRCCSD approaches can noticeably depend on the SVD
threshold used for eliminating linear dependencies (for exam-
ple, when describing the N2 molecule dissociation90). This is a
potential source of PES discontinuities. Besides, the ic-MRCC
approach does not account for the reference-specific orbital
relaxation.

In the context of a methodological development of CC
theories based on noncommutative cluster expansions, we
should mention the important works of Mukherjee and co-
workers77,390 where the authors stress the necessity of redefin-
ing the factors in a noncommuting exponential expansion, such
that each distinct excitation appears only once in the cluster
expansion. The corresponding combinatoric factors are known
as automorphic factors. The redefined noncommutative expo-
nential was used by the authors within the valence-universal
framework under the name the combinatoric open-shell coupled
cluster theory.77,390

As we have already mentioned, prior to the ic-MRCC
approach, other variants of the internally contracted HS-
MRCC theory had been suggested. Chan and co-workers317�321

elaborated the canonical transformation (CT) CC theory,
which relies on the reference function |Ψ(0)æ constructed with
either CASSCF or DMRG methods (only the corresponding
density matrices are really needed). Importantly, the use of
DMRG reference functions noticeably extends the maximal
size of the active space that can be employed for the zeroth-
order description of the MR problem. Subsequently, the
dynamic electron correlation is captured with a unitary ex-
ponential wave operator:

jΨæ ¼ eT̂ � T̂þ jΨð0Þæ ð3:6:8Þ
Because of the unitary form, the expansion of the canonically
transformed Hamiltonian

e�ðT̂ � T̂þÞĤeT̂ � T̂þ ¼ Ĥ þ ½Ĥ, T̂ � T̂þ�
þ 1
2!
½½Ĥ, T̂ � T̂þ�, T̂ � T̂þ� þ ::: ð3:6:9Þ

does not terminate naturally (each commutator has a higher
excitation rank than the operators involved in it). The
CT-CC theory exploits the density cumulant decomposition
technique450,453 for approximating higher�rank density
matrices317 (density matrices naturally appear in internally
contracted CC theories392�394). The reference function
can further be relaxed by making stationary the expectation
value of the canonically transformed Hamiltonian,
ÆΨ(0)|e�(T̂�T̂+)Ĥe(T̂�T̂+)|Ψ(0)æ (with respect to the reference
space coefficients defining |Ψ(0)æ). The CT-CC theory is
invariant to active-orbital rotations. If the cluster operator is
truncated at the level of singles-and-doubles, the computational
scaling of the resulting approach is O(N6), though the leading
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term is o1v5, where o/v is the amount of occupied/virtual
orbitals, respectively. As an internally contracted MRCC
scheme the CT-CC method also requires an elimination of
certain linear dependencies when solving the amplitude equa-
tions (with the aid of the overlap matrix). In general, this can
lead to convergence problems and discontinuities of potential
energy surfaces.90,321 In order to improve the convergence
properties, the strongly contracted CT-CC theory was recently
introduced.321 The CT-CC methods were tested in several MR
calculations, and certain results are encouraging.317�321

From a formal point of view, the SS-MRCC approach of
Banerjee and Simons91 and the SS-EOMCC/pIC-MRCC meth-
ods of Nooijen and co-workers333,334,395 also employ a single
cluster operator acting on a multideterminantal reference func-
tion. However, the principal distinction of these HS-MRCC
methods is the use of commutative excitation operators in the
cluster ansatz (covariant and contravariant index ranges do not
overlap in amplitude tensors). Banerjee and Simons91 suggested
a state-specific MRCC ansatz of the form

jΨæ ¼ eT̂ Ĉj0æ ¼ eT̂ jΨð0Þæ ð3:6:10Þ
where

jΨð0Þæ � Ĉj0æ ¼ ∑
μ

Cμμ̂þj0æ ¼ ∑
μ

Cμjμæ ð3:6:11Þ

is the CAS reference function (initially taken from a CASSCF
calculation). Here |0æ is the core determinant containing only
core-orbitals (the orbitals which are occupied in all reference
determinants), while μ̂+ contains solely active-particle creators,
generating the reference determinant |μæ from the core vacuum
|0æ. The cluster operator T̂ is usually truncated at the singles-and-
doubles level. The peculiarity of the approach of Banerjee and
Simons is that the cluster operator correlates only active elec-
trons by exciting them to inactive virtual orbitals:

T̂k ¼ 1
k!k! ∑

a1:::ak
I1:::Ik

ta1:::akI1:::Ik τ̂
a1:::ak
I1:::Ik ð3:6:12Þ

where each index from I1...Ik designates an active hole (an active
orbital which is occupied in some but not all reference
determinants). Thus, all active orbitals are holes (there is no
active particles), while inactive virtuals constitute the particle
range. The exponential operator eT̂ acts on the entire reference
vector ∑μC

μ|μæ. The cluster amplitudes are determined by
solving the internally contracted residual equations:

" x : ÆΨð0Þjτ̂þx e�T̂ ĤeT̂ jΨð0Þæ ¼ 0 ð3:6:13Þ
where x runs through all components of the cluster operator T̂,
while different vectors ÆΨ(0)|τ̂x

+ are not orthogonal again. The
model space components,Cμ, can be either iteratively adjusted or
fixed at the CASSCF values.91

Contrary to other internally contracted MRCC methods, the
MRCC ansatz of Banerjee and Simons is never complete, since it
does not include the core-active excitations (active orbitals are not
included in the particle range). These excitations are also called
semi-internal and they are quite important in practice. Besides
some earlier attempts at improvement,240,241 a real resurrection
of the MRCC approach of Banerjee and Simons occurred due to
the works of Nooijen and co-workers,333,334,395 who employed
the EOMCC method for a (partial) inclusion of semi-internal

excitations. Their state-specific (SS) MR-EOMCC method,333,334

which later evolved into the partially internally contractedMRCC
approach395 (pIC-MRCC), is based on the following ansatz:

jΨæ ¼ eT̂ R̂jΨð0Þæ ¼ eT̂ R̂j ∑
μ

Cμjμæ

¼ eT̂ð∑
μ

Cμjμæ þ ∑
μ, l

CμR̂l
μjμæÞ ð3:6:14Þ

where |Ψ(0)æ � ∑μC
μμ̂�|0æ = ∑μC

μ|μæ is a multidimensional
reference vector generated from the core vacuum, |0æ, in which
all active orbitals are occupied (μ̂� annihilates excessive active
electrons, creating the reference determinant |μæ; alternatively,
one can start from the core vacuum where all active orbitals are
empty and then create |μæ with μ̂+). A set of operators
R̂μ
l generates excitations absent in the cluster operator. The

cluster operator is truncated at the level of singles and doubles,
T̂ = T̂1 + T̂2, where

T̂k ¼ 1
k!k! ∑

a1:::ak
i1:::ik

ta1:::ak̅ i1:::̅ik τ̂
a1:::ak
̅ i1:::̅ik ð3:6:15Þ

where τ̂i1...ik
a1...ak are spin-free unitary generators. Similarly to the

ansatz of Banerjee and Simons, all active orbitals are
included into the hole range, im, together with inactive occu-
pied orbitals. Inactive virtuals constitute the particle range, am.
The state-specific cluster amplitudes are determined by solving
a spin-adapted version of eq 3.6.13. Provided that the reference
function, |Ψ(0)æ, is a spin eigenfunction, the SS-MR-EOMCC/
pIC-MRCC wave function is automatically spin-adapted. As we
already know, the internally contracted residual equations can
suffer from near-singularities, requiring a procedure for remov-
ing linearly dependent components. Again the use of discard-
ing thresholds can lead to PES discontinuities. To alleviate this
problem, the perturbative estimates of discarded amplitudes
can be used.334 Alternatively, a solution procedure based on
the many-body residuals of the similarity-transformed Hamil-
tonian is free from near-singularities.395

Having determined the cluster operator, one proceeds with a
similarity-transformation of the Hamiltonian, H̅̂ = e�T̂ĤeT̂,
accompanied by a subsequent diagonalization in the MRCIS
space (reference space + all singles from each reference CSF):

" l : Ĥ ðkÞjRlæ ¼ EljRlæ ð3:6:16Þ
where the vector |Rlæ is expanded in the MRCIS space, and the
superscript (k) means that the similarity-transformed Hamiltonian
is constructed with the cluster amplitudes computed for
the kth electronic state (all other eigenstates appear as
byproducts). Importantly, |Rlæ contains semi-internal excita-
tions initially absent in eT̂|Ψ(0)æ, which, in particular, allow the
reference-specific orbital relaxation (absent in the ic-MRCC
method, for example). In order to include all important semi-
internal excitations, the authors declared all holes as active,
which can result in a quite large MRCIS diagonalization.
In practice, the SS-MR-EOMCC/pIC-MRCC approach has
several approximations intended to decrease its computa-
tional cost.334,395

The SS-MR-EOMCC/pIC-MRCC method of Nooijen and
co-workers was shown to provide quite accurate results for
several MR problems.333,334,395 Formally, the method can be
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applied to any ground or excited state in a state-specific manner.
Due to the use of a single cluster operator, larger active spaces can
be considered, although in the current version the MRCIS
diagonalization space can grow quite fast. The approach is
invariant to active orbital rotations, because all active orbitals
are holes in T̂, while MRCIS preserves the invariance due to its
linear structure. However, because of theMRCIS diagonalization
step, the SS-MR-EOMCC/pIC-MRCCmethod violates general-
ized extensivity, being only core-extensive.

Another somewhat related formalism, called the block-correlated
CC approach (BCCC), was suggested by Fang and Li.266�268

The peculiarity of their scheme is that the entire CAS model
space is considered as a single block that can be in several
different states, each state corresponding to a particular distribu-
tion of N0 active electrons among active orbitals.N0 ranges from
0 to the maximal amount of electrons that fits the active orbital
space. In other words, this multiorbital block can be in any state
from the complete Fock space built on the active orbitals only.
Inactive orbitals are treated conventionally (one orbital per
block). The presence of such a multiorbital block changes the
hierarchy of cluster operators. The BCCC ansatz can be formally
represented as

jΨæ ¼ eT̂
B
1 þ T̂B

2 þ T̂B
3 þ T̂B

4 þ :::j0æ ð3:6:17Þ
where T̂k

B is a cluster operator defined with respect to blocks (not
individual orbitals), and |0æ is the lowest-energy CASSCF
determinant. A truncation of the cluster operator on T̂4

B leads
to the BCCC4 approach. The BCCC4 approach scales as
O(N6), where N is the total number of orbitals. When the
multiorbital block reduces to a single orbital (SR case, one-
dimensional model space) the BCCC4 method turns into the
regular CCSD approach. The BCCC4 method with a CAS(2,2)
model space is invariant with respect to separate unitary trans-
formations within the inactive-occupied/active/inactive-virtual
orbital spaces. The BCCC4 approach was successfully tested on
some model systems.266�268 However, in order to describe
multiple-bond breaking processes or other “strong”MR phenom-
ena, one needs to either extend the active space together with the
cluster operator (computationally expensive) or to introduce
multiple active spaces.

3.7. Conclusions: Genuine Hilbert-Space Multireference
Coupled-Cluster Theory

The genuine HS-MRCC theory has been significantly ad-
vanced over the last period of time. Several essential problems
pertinent to classical formulations (“proper residual”, amplitude
redundancy, intruder states, etc.) were revealed, thoroughly
analyzed, and mostly alleviated. A brief summary characteriz-
ing each HS-MRCC scheme (implying their computationally
tractable approximations) is given in Table 1. Having effi-
ciently implemented such MRCC methods as ic-MRCCSD,
pIC-MRCCSD, MRexpT-SD, GMS-SU-MRCCSD, and Mk-
MRCCSD, one can already resolve certain complex quantum-
chemical problems410 severely plagued by quasidegeneracy. Of
course, neither MRCC approach is ideal (nor is SRCC) and
further improvements are desirable. We want to emphasize that
the pessimism towardMRCC techniques has beenmostly caused
by the complexity of MRCC theory. However, it should be
realized that in general complex problems unavoidably require
complex methods. At the same time, complex methods need an
efficient and user-friendly computer implementation in order to be
used by a wide chemical community.

Unfortunately almost all MR methods (MRCC, MRCI, and
MRPT) require a manual selection of the model space for the
problem of interest. Even a more fundamental problem stems
from the fact that the model space can change along the PES. The
reference determinants important in one region of the PES can
become low-contributing in another region. In particular, most
MR approaches do not automatically reduce to SR approaches in
SR regions of a PES because of the necessity of keeping the
reference space consistent along the entire PES. However, to
maintain all ever-required determinants in the model space can
be expensive computationally, or plagued by the intruder state
problem. On the other hand, modifying the model space in accord
with the dynamically changing character of the PESwill necessarily
introduce discontinuities to the calculated energy. This is a funda-
mental problem of MR approaches that can hardly be resolved
within the classical “theoretical model chemistry” scheme.

4. GENUINE MULTIREFERENCE COUPLED-CLUSTER
THEORY IN FOCK SPACE

4.1. The Valence-Universal Wave Operator: Subsystem
Embedding Conditions

Historically, the Fock-space multireference coupled-cluster (FS-
MRCC) approaches were among the first attempts to treat open-
shell electronic states,85�87,102,188�191 mostly focusing on an
appropriate account of the static electron correlation (fully
degenerate MR problems). Similarly to the HS-MRCC formal-
ism, the FS-MRCC theory also uses a multidimensional model
space in which the zeroth-order reference wave function is
constructed. In a similar fashion, the target wave functions are
obtained by the action of a wave operator that is determined
by solving the Bloch equation (eq 3.1.7). However, contrary to
the HS-MRCC methods based on the JM ansatz, the FS-
MRCC theory is based on the so-called valence-universal (VU)
exponential ansatz, pioneered in the works of Mukherjee and
co-workers.102,188,189 Such an ansatz is composed of a single
exponential operator capable of generating wave functions
with a different number of electrons (or quasi-particles) when
acting on appropriate reference functions. Notwithstanding
some early forms of the VU-MRCC wave operator,188,189,192

now all practical FS-MRCC schemes are based on the normal-
ordered valence-universal wave operator, Ω̂ = {eŜ}, introduced
by Lindgren:87

jΨkæ ¼ feŜgjΦkæ ð4:1:1Þ
where the curly brackets {} mean normal-ordering of all terms
with respect to a certain unique Fermi vacuum, |0æ, and |Φkæ is
the reference function for the kth eigenstate, |Ψkæ, of the
normal-ordered (with respect to |0æ) Hamiltonian expressed
in the second-quantized form by eq 2.2.8 (different eigenstates
may correspond to different amounts of particles). Similar schemes
were also investigated by Offerman et al.193 and Ey194 in the field
of nuclear physics.

In contrast to the Hilbert-space MRCC theory, FS-MRCC
approaches operate in the Fock space, F, which is a union of
Hilbert spaces, H(N), with a different number of particles, N:

F ¼ ∪N HðNÞ ð4:1:2Þ
Therefore, in FS-MRCC theory one can simultaneously access
electronic states with a different number of electrons (or
quasiparticles in the hole�particle formalism): the ground state



206 dx.doi.org/10.1021/cr2001417 |Chem. Rev. 2012, 112, 182–243

Chemical Reviews REVIEW

(based on |0æ), ionized/electron-attached states (�1/+1 particle
or, equivalently, +1 quasiparticle), excited states (+2/+4/...
quasiparticles), mixed states, etc. 85,86,449 The corresponding
wave functions are still constructed with the same valence-
universal wave operator, which can be either a pure
exponential,188 Ω̂ = eŜ, or normal-ordered exponential,87 Ω̂ =
{eŜ}, the latter being more compact and convenient in practice.
Such flexibility makes FS-MRCC theory very attractive for
quantum chemistry.

Formally, FS-MRCC approaches tackle MR problems in a
different way, as compared to HS-MRCC methods. In the
following we will restrict ourselves to the FS-MRCC theory
based on the hole�particle formalism (for more general
FS-MRCC formalism, we refer the reader to the works of
Stolarczyk and Monkhorst444�449). First of all, there is a
special (usually closed-shell) determinant, |0æ, that defines the
global Fermi vacuum which is universal for all operators
involved in the theory, regardless of the calculated electronic
state. In FS-MRCC theory, the model space is constructed
using active orbitals, but in a more general way than in HS-
MRCC theory. Namely, the number of active electrons can
vary; i.e., the reference function, |Φkæ, can contain different
amounts of active electrons, depending on the calculated state.
The orbital space partitioning together with orbital labeling is
shown in Figure 4. The cluster excitation operator Ŝ can be
represented as

Ŝ ¼ Ŝ1 þ Ŝ2 þ ::: þ Ŝn ð4:1:3Þ

Ŝm ¼ 1
m!m! ∑

a1:::am
i1:::im

Sa̅1:::a̅m̅ i1:::̅im τ̂a̅1:::a̅m̅ i1:::̅im ð4:1:4Þ

where τ̂i1...im
a1...am � {â̅ 1

+...â̅ m
+ i̅^m

�...i̅^ 1
�} is an elementary normal-

ordered excitation operator, Si1...im
a1...am is the corresponding cluster

amplitude, and the summation excludes index combinations where
all indices are active (no internal excitations/amplitudes). One
can notice a close resemblance with eq 3.6.3 (the internally
contracted HS-MRCC methodology is actually based on the
arguments of FS-MRCC theory). The indices i1...im run over the
combined [inactive_occupied+active] range, whereas a1...am run
over the combined [active+inactive_virtual] range, as illustrated in
Figure 4. Hence, operators Ŝm have a mixed excitation/de-excita-
tion nature and do not commute with each other (active holes/
particles can be both created and annihilated, causing possible

contractions between the cluster operators). The first FS-
MRCC methods explicitly dealt with a noncommutative algebra,
facing the necessity of valence universality in order to resolve
redundancies.102,188,189 However, very soon the advantages of
the normal-ordered VU-MRCC formulation (with the exponential
given by eq 4.1.1) became clear.85�87

In practical calculations the excitation operator Ŝ in eq 4.1.3 is
truncated, usually at the singles and doubles level (FS-
MRCCSD).195 For the following analysis it is convenient to split
the summation in eq 4.1.4, which defines the cluster operator Ŝm,
into subsummations by separating hole/particle subranges in
each index range. The derived summations define more specific
operators that differ in the amount of quasiparticle (hole/particle)
annihilators in τ̂i1...im

a1 ...am � {â1
+...âm

+ îm
�...î1

�}:

Ŝm ¼ Ŝð0, 0Þm þ Ŝð0, 1Þm þ Ŝð1, 0Þm þ Ŝð1, 1Þm þ :::

þ Ŝðm,m � 1Þ
m þ Ŝðm � 1,mÞ

m ð4:1:5Þ

where Ŝm
(k,l) means that the rank of the operator is 2m and it has

k active-particle annihilators, Â�, and l active-hole annihila-
tors, Î+, with respect to the hole-particle vacuum, |0æ. Note that
there is no Ŝm

(m,m) operator because it would have carried solely
active indices. The (k,l) pair specifies the so-called sector of the
Fock space, (k + l) being the valence rank of the corresponding
Ŝm
(k,l) operator.449 Each sector (k,l) of the Fock space is a
Hilbert space associated with (k + l) quasiparticles or the
corresponding amount of real particles [see eq 4.1.2; the
number of electrons is equal to (N0 + k � l), where N0 is
the number of electrons in the Fermi vacuum]. Thus, each
sector of the Fock space is an invariant subspace of the
quasiparticle number operator.449 However, all wave functions
are still obtained with the same valence-universal wave opera-
tor: |Ψn

(k,l)æ = {eŜ}|Φn
(k,l)æ, " k, l, n. Contrary to SRCC

methods, in FS-MRCC theory there is no 1�1 correspondence
between the excitation rank of the cluster operator Ŝm

(k,l) and
the excitation rank of the determinants generated by it, since
the latter rank depends on the reference determinant the Ŝm

(k,l)

operator acts on.
In FS-MRCC theory, the model space and the external space

also inherit the sector structure:

P ¼ Pð0, 0Þ x Pð0, 1Þ x Pð1, 0Þ x Pð1, 1Þ þ ::: ð4:1:6Þ

Q ¼ Q ð0, 0Þ x Q ð0, 1Þ x Q ð1, 0Þ x Q ð1, 1Þ þ :::: ð4:1:7Þ

Table 1. A Summary for HS-MRCC Methods

method size-extensivity/ size-consistency proper residual convergence

BW-MRCC no/no no OK

CAS-SU-MRCC yes/yes no often poor

IAS/GMS-SU-MRCC (Paldus, Li) core-extensive/yes no OK (with a proper IAS/GMS)

IAS/GMS-SU-MRCC (Meissner/Mukherjee) yes/yes no OK (with a proper IAS/GMS)

Mk-MRCC yes/yes no OK; poor for SR and excited states

sr-MRCC yes/yes no OK; poor for SR and excited states

SS-H2E2-MRCC asymptotic size-extensivity/yes no unknown

MRexpT core-extensive/yes yes OK

CTCC yes/yes approx. OK; sometimes poor

ic-MRCC yes/not always yes OK; sometimes poor

pIC-MRCC core-extensive/not always yes OK
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Associated projectors will have operator hats on top:

P̂ð0, 0Þ ¼ j0æÆ0j ð4:1:8Þ

P̂ð0, 1Þ ¼ ∑
I
jIæÆIj, jIæ ¼ Î�j0æ ð4:1:9Þ

P̂ð1, 0Þ ¼ ∑
A

jAæÆAj, jAæ ¼ Âþj0æ ð4:1:10Þ

P̂ð1, 1Þ ¼ ∑
I,A

jAI æÆAI j, jAI æ ¼ Âþ Î�j0æ ð4:1:11Þ

etc., and

Q̂ ð0, 0Þ ¼ ∑
m

Q̂ ð0, 0Þ
m , Q̂ ð0, 0Þ

m ¼ ∑
a1 < ::: < am
i1 < ::: < im

ja1:::ami1:::im æÆa1:::ami1:::im j

ð4:1:12Þ

Q̂ ð0, 1Þ ¼ ∑
m

Q̂ ð0, 1Þ
m , Q̂ ð0, 1Þ

m ¼ ∑
a1 < ::: < am�1

i1 < ::: < im

ja1:::am�1
i1:::im

æÆa1:::am�1
i1:::im

j

ð4:1:13Þ

Q̂ ð1, 0Þ ¼ ∑
m

Q̂ ð1, 0Þ
m , Q̂ ð1, 0Þ

m ¼ ∑
a1 < ::: < am
i1 < ::: < im�1

ja1:::ami1:::im�1
æÆa1:::ami1:::im�1

j

ð4:1:14Þ

Q̂ ð1, 1Þ ¼ ∑
m

Q̂ ð1, 1Þ
m , Q̂ ð1, 1Þ

m ¼ ∑
a1 < ::: < am�1

i1 < ::: < im�1

ja1:::am�1
i1:::im�1

æÆa1:::am�1
i1:::im�1

j

ð4:1:15Þ
etc. Summations in eqs 4.1.12�4.1.15 exclude internal excita-
tions, while the model space projectors in eqs 4.1.8�4.1.11 are
fully based on internal excitations/removals/attachments. Thus,
P̂ and Q̂ projectors are mutually exclusive (the model space
and the external space are orthogonal). Each |Φn

(k,l)æ is
expanded in P(k,l).

Therefore, in FS-MRCC theory we have a hierarchical
structure of operators, induced by the direct sum decomposition
of the Fock space (eq 4.1.2). From the above definitions it
follows that

Ŝðm, nÞP̂ðk, lÞ ¼ 0, if m > k or n > l ð4:1:16Þ

This rule also applies to products of Ŝ(m,n):

R̂ðm, nÞP̂ðk, lÞ ¼ 0, if m > k or n > l ð4:1:17Þ
where R̂(m,n) � S(i,j)S(m�i,n�j) (or any other product containing
an arbitrary amount of operators). In this sense particle/hole
sector pointers are additive. Due to the above conditions many
terms in the expansion {eŜ}P̂(k,l) will be identically zero.

Similarly to HS-MRCC theory, the FS-MRCC amplitude
equations are derived from the Bloch equation (subsection

3.1), which is consecutively resolved in each sector of the Fock space
[in a nondescending order of (k + l), starting from (0,0)]:

" ðk, lÞ : Q̂ ðk, lÞĤfeŜgP̂ðk, lÞ ¼ Q̂ ðk, lÞfeŜgĤef f P̂ðk, lÞ

ð4:1:18Þ

Ĥef f ¼ P̂ðk, lÞĤfeŜgP̂ðk, lÞ ð4:1:19Þ

A diagonalization of the effective Hamiltonian, Ĥeff, in the model
space of each sector (P(k,l)) yields the required electronic
energies and reference wave functions corresponding to that
sector. The target wave functions can be obtained from the
reference wave functions, |Φn

(k,l)æ, by the action of the valence-
universal wave operator: {eŜ}|Φn

(k,l)æ (the target wave functions
are not necessarily exact in the limit). Equation 4.1.18 for
each subsequent (k + l) implies the existence of solutions
(amplitudes) for all preceding values of (k + l), starting from
(0,0). In such a hierarchical way the number of amplitude
equations in each sector is equal to the number of unknown
cluster amplitudes in that sector. The necessity of a hierarchical
equation solver is dictated by the presence of amplitudes from
lower sectors in the amplitude equations for higher sectors. For
example, the following matrix element appears in the (1,1)
sector:

ÆaI jŜjAI æ ¼ SaA þ SIaIA ð4:1:20Þ
meaning that a particular excited determinant ÆIa| from the
external space Q(1,1) can be reached in multiple (two) ways:
(1) |I

aæ = â+Â�|I
Aæ with the amplitude SA

a of Ŝ1
(1,0), and (2) |I

aæ =
â+̂I�Î+Â�|I

Aæ with the amplitude SIA
Ia of S2

(1,1), where |I
Aæ is a

reference determinant from the model space P(1,1). Diagramma-
tically the matrix element in eq 4.1.20 can be expressed as

The isolated single line in the first diagram is called a spectator
line. The cluster amplitudes containing the same index in both
covariant and contravariant rows are called spectator amplitudes.
Due to the presence of spectators, the FS-MRCC amplitude
equations in each subsequent sector (k,l) involve amplitudes
from lower sectors (i,j): i e k, j e l. The hierarchical solu-
tion scheme is called the subsystem embedding conditions
(SEC).85,86,190 In a more general case, one can also
employ the FS-MRCC framework of Stolarczyk and
Monkhorst,444�449 which is based on a systematic decou-
pling of the Fock-space eigenvalue problem via consecutive
similarity transformations of the original second-quantized
Hamiltonian.

In practice, one starts by choosing a certain Fermi vacuum,
|0æ, which is usually a nondegenerate closed-shell determinant.
This determinant serves as a reference function for the (0,0)-
sector eigenproblem. The (0,0)-sector amplitude equations
are simply the conventional SRCC equations with a truncated
cluster operator T̂ � Ŝ(0,0). Hence it is important that the
Fermi-vacuum determinant, |0æ, is the only leading determinant
in the (0,0)-sector wave function (unless T̂ is sufficiently
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complete). Thus, |0æ can be either a closed-shell or a high-spin
open-shell determinant.195 It is convenient to rewrite the Bloch
equation (eqs 4.1.18 and 4.1.19) by separating the Ŝ(0,0)

operator as

Ŝ ¼ ~̂S þ Ŝð0, 0Þ ¼ ~̂S þ T̂ ð4:1:22Þ
thus obtaining

" ðk, lÞ : Q̂ ðk, lÞðe�T̂ĤeT̂Þfe~̂S gP̂ðk, lÞ

¼ Q̂ ðk, lÞfe~̂S gP̂ðk, lÞĤfeŜgP̂ðk, lÞ ð4:1:23Þ
eq 4.1.23 was premultiplied with e�T̂ (T̂ � Ŝ(0,0)). A factoriza-
tion of eT̂ is possible because T̂ does not contain quasiparticle
annihilators and the wave operator, {eŜ}, is normal-ordered.
Recognizing the connected similarity-transformed Hamiltonian
of SRCC theory, H̅̂ � e�T̂ĤeT̂, one can finally write down the
FS-MRCC equations as

" ðk, lÞ : Q̂ ðk, lÞĤfe~̂S gP̂ðk, lÞ¼ Q̂ ðk, lÞfe~̂S gĤef f P̂ðk, lÞ

ð4:1:24Þ

Ĥef f ¼ P̂ðk, lÞĤfeŜgP̂ðk, lÞ ð4:1:25Þ
where one should not forget that Ĥeff is different in different
sectors (we omitted the sector pointer). Equation 4.1.24 serves for
determining cluster amplitudes of Ŝm

(k,l) (for all m included in the
VU-MRCC ansatz). Because of eq 4.1.16, the construct {eŜ

~
} P̂(k,l)

terminates quite fast and the lhs of eq 4.1.24 is linear in unknown
cluster amplitudes (amplitudes of Ŝm

(k,l)," m) whereas the rhs is
not (Ĥeff depends on the unknown cluster amplitudes).

Even though the above equations are not manifestly
connected, it can be shown that all disconnected terms
cancel,85�87,308 such that one can equivalently use a connected
form of the FS-MRCC equations (connected form of
eq 4.1.24). Thus, the above FS-MRCC theory is size-extensive
for total energies and size-intensive for energy differences.
Also the FS-MRCC equations are invariantwith respect to the
active-orbital rotations which do not change the Fermi
vacuum (do not mix holes and particles of the Fermi
vacuum).198 Indeed, the cluster operator Ŝ is invariant to
active-orbital rotations by construction (eq 4.1.4).

From the chemical point of view, each sector of the Fock space
corresponds to a certain type of electronic state.85,86,196,215,449

The type of electronic state is determined by the reference wave
function, |Φn

(k,l)æ, which is supposed to dominate in the complete
(target) quasiparticle wave function (the reference function
should qualitatively describe the corresponding quasiparticle
state). Therefore, the (0,1) sector corresponds to ionized elec-
tronic states (one-hole states), (1,0) sector to electron-attached
states (one-particle states), (1,1) sector to singly excited states
(one-particle�one-hole states), (0,2) sector to doubly ionized
states (two-hole states), (2,0) to doubly electron-attached states
(two-particle states), (1,2) sector to singly excited ionized states
(one-particle�two-hole “shake-up” spectra),197 (2,1) sector to
singly excited electron-attached states (two-particle�one-hole
states), (2,2) sector to doubly excited states (two-particle�two-
hole states), and so on. Formally, the FS-MRCC theory is ideally
suited for spectroscopy. However, one needs to pass quite a long
way to obtain excited states dominated by double excitations
(with respect to |0æ).

Let us more carefully analyze the normal-ordered FS-MRCC
ansatz198

jΨðk, lÞ
n æ ¼ eT̂fe~̂S gjΦðk, lÞ

n æ ð4:1:26Þ
where n enumerates eigenstates in the (k,l) sector. A separa-
tion of the SRCC exponential operator, eT̂, from the genuine
FS-MRCC part, {eŜ~}, is more “fundamental” than just being
convenient. The cluster operator T̂ is a “pure” excitation
operator, whereas Ŝ~ is always a mixed de-excitation/excitation
operator, that is, all components of Ŝ~ always contain quasiparticle
annihilators (hole/particle annihilators) which are shifted to the
right due to normal-ordering. Hence,

~̂S j0æ ¼ 0 ð4:1:27Þ
For example, the cluster operator Ŝm

(i,j) acting on the reference
function |Φn

(k,l)æ ∈ P(k,l) (i e k, j e l) first de-excites/
annihilates certain active quasiparticles [if i = k and j = l, all
quasiparticles in |Φn

(k,l)æ are annihilated, returning to the Fermi-
vacuum state, |0æ] and then builds up an excitation to the external
space,Q. In accordance with eqs 4.1.16 and 4.1.17, the expansion
{eŜ

~
}|Φn

(k,l)æ terminates quite quickly [all products of Ŝm
(i,j) with

“combined” sectors exceeding (k,l) produce zeros]. For instance, in
the (1,1) sector, a truncated cluster operator Ŝ~ = Ŝ~1 + Ŝ~2 leads to

fe~̂SgjΦð1, 1Þ
n æ ¼ jΦð1, 1Þ

n æ þ fŜð0, 1Þ1 þ Ŝð0, 1Þ2 gjΦð1, 1Þ
n æ

þ fŜð1, 0Þ1 þ Ŝð1, 0Þ2 gjΦð1, 1Þ
n æ þ fŜð1, 0Þ1 Ŝð0, 1Þ1

þ Ŝð1, 0Þ1 Ŝð0, 1Þ2 þ Ŝð1, 0Þ2 Ŝð0, 1Þ1 þ Ŝð1, 0Þ2 Ŝð0, 1Þ2

þ Ŝð1, 1Þ2 gjΦð1, 1Þ
n æ ð4:1:28Þ

One can see that the expansion is rather short (as compared to
eT̂|0æ, for example). Taking into account the structure of the
reference function in P(1,1)

jΦð1, 1Þ
n æ ¼ ∑

I,A
CA
I jAI æ ð4:1:29Þ

one can classify excitations in eq 4.1.28. The first term on the rhs
is the reference function itself, |Φn

(1,1)æ. The second term
augments the reference function as

fŜð0, 1Þ1 þ Ŝð0, 1Þ2 gjΦð1, 1Þ
n æ

¼ ∑
i1, I1

SI1i1 ð∑
A1

CA1
I1 ÞjA1

i1 æ þ 1
2! ∑

i1, i2,
a1, I1

SI1a1i1 i2 ð∑
A1

CA1
I1 ÞjA1a1

i1 i2 æ

¼ ∑
i1,A1

RA1
i1 j

A1
i1 æ þ 1

2! ∑
i1, i2,
a1,A1

RA1a1
i1 i2 jA1a1

i1 i2 æ ð4:1:30Þ

where Ri1
A1 = ∑I1Si1

I1CI1
A1, Ri1i2

A1a1 = ∑I1Si1i2
I1a1CI1

A1. Analogously, the third
term gives

fŜð1, 0Þ1 þ Ŝð1, 0Þ2 gjΦð1, 1Þ
n æ ¼ ∑

I1, a1

Ra1
I1 ja1I1 æ þ 1

2! ∑
i1, I1,
a1, a2

Ra1a2
I1 i1 ja1a2I1 i1

æ

ð4:1:31Þ
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where RI1
a1 = ∑A1

SA1

a1CI1
A1, RI1i1

a1a2 = ∑A1
SA1i1
a1a2CI1

A1. Finally, the fourth
term gives

fŜð1, 0Þ1 Ŝð0, 1Þ1 þ Ŝð1, 0Þ1 Ŝð0, 1Þ2 þ Ŝð1, 0Þ2 Ŝð0, 1Þ1 þ Ŝð1, 0Þ2 Ŝð0, 1Þ2

þ Ŝð1, 1Þ2 gjΦð1, 1Þ
n æ ¼ ∑

i1,
a1

Ra1
i1 j

a1
i1 æ

þ 1
2!2! ∑

i1, i2,
a1, a2

Ra1a2
i1 i2 j

a1a2
i1 i2 æ þ 1

3!3! ∑
i1, i2, i3,
a1, a2, a3

Ra1a2a3
i1 i2 i3 ja1a2a3i1 i2 i3 æ

ð4:1:32Þ
where Ri1

a1, Ri1i2
a1a2, and Ri1i2i3

a1a2a3 coefficients can be derived analo-
gously. Note that S amplitudes carrying only active indices are
always zero. Thus, {eŜ~}|Φn

(1,1)æ is simply a linear combination of
singly, doubly, and triply excited determinants with respect to |0æ
(excluding |0æ itself). A very detailed analysis of the FS-MRCC
ansatz can be found in ref 198.

Therefore, the genuine FS-MRCC part, {eŜ~}|Φn
(k,l)æ, is (in some

sense) “pseudoexponential”. In practice (due to eqs 4.1.16 and 4.1.17)
it terminates much sooner than reaching the maximum possible
excitation rank (number of electrons). The true exponential part
comes from the SRCCexponential, eT̂, because any product of T̂ still
belongs to the (0,0) sector. Alternatively, one can start from the
SRCC similarity-transformed Hamiltonian H̅̂ � e�T̂ĤeT̂ = (ĤeT̂)C
(instead of the bare HamiltonianĤ) and hierarchically solve the FS-
MRCC equations in higher sectors (k,l), k + l > 0. In such a way, the
FS-MRCC problem splits into two stages: (1) obtaining the SRCC
exponential eT̂, which describes the dynamic electron correlation over
the entire electronic system, and (2) hierarchically solving the
pseudoexponential FS-MRCC equations with the similarity-trans-
formed Hamiltonian, H̅̂. In the second step, one accounts for the
nondynamic/static electron correlation peculiar to the state of interest
(in a given sector of the Fock space). Again one can notice that
similarity-transformations of the Hamiltonian decouple the original
eigenvalue problem (at least approximately) into subproblems.449

When the cluster operator is complete, such decoupling is exact.
However, regardless of the truncation of the cluster operator, the
similarity-transformed Hamiltonian preserves the original (exact) set
of eigenvalues. At the same time, the corresponding eigenvectors are
not automatically exact. Because of decoupling, in each sector only the
relevant part of the wave function is determined, i.e., the part
corresponding to a given sector (particular number of quasiparticles).
However, the exact (full CI) electronic wave function can have
components in different quasiparticle sectors. For example, the wave
function of a singly excited electronic state in general can contain the
Fermi-vacuum determinant. However, in the SEC-FS-MRCC ap-
proach each particular sector of the quasiparticle Fock space is
decoupled from the lower sectors. Consequently, any FS-MRCC
wave function in the (1,1) sector cannot contain the Fermi-vacuum
determinant since the latter belongs to the (0,0) sector.Note that this
peculiarity holds even if the cluster operator is complete. Hence, in
order to determine the entire wave function, additional conditions
must be imposed.

There is also a methodological subtlety related to the numer-
ical check of additive separability of FS-MRCC energies (as well
as HS-MRCC). Suppose we are concerned with singly excited
electronic states, thus working in the (1,1) sector. We want to

numerically check whether a simultaneous FS-MRCC descrip-
tion of two noninteracting singly excited states (simultaneous
excitations) gives us a sum of the energies obtained by separate
FS-MRCC calculations of each of those states. We can accom-
plish a separate calculation of each singly excited state by
specifying the (1,1)-sector model space and employing the
(1,1)-sector VU-MRCC wave operator. However, in order to
calculate the supersystem we must proceed to the (2,2) sector,
because two simultaneous single excitations produce a double
excitation. Consequently, the (2,2)-sector model space for the
supersystem must be a direct product of the (1,1)-sector model
spaces used in the subsystem calculations. Also the valence-
universal wave operator must be extended to the (2,2) sector,
that is, we also need (0,2), (2,0), (1,2), and (2,1) sectors to be
considered prior to the final (2,2)-sector calculation. Following
these arguments, one realizes that a simultaneous supercalcula-
tion of three noninteracting systems would require the (3,3)
sector, four noninteracting systems would require the (4,4)
sector, and so on. In other words, the level of the theoretical
model becomes dependent on the amount of noninteracting
systems considered. This is different from what one has in SRCC
theory, where the model space is trivially one-dimensional, such
that any direct product of one-dimensional model spaces is also
one-dimensional. In contrast, a multidimensional model space
requires a method to be properly extended when simultaneously
calculating noninteracting open-shell fragments, such that the
model space for the supersystem is a direct product of the
subsystem model spaces while the wave operator is modified
accordingly. This equally applies to both the Fock-space and
Hilbert-spaceMRCC theories. The only exception from this rule
is an addition of SR closed-shell noninteracting fragments, i.e.,
molecular fragments described by a SR wave function built
upon a single determinant (one-dimensional model space).
Apparently, the addition of noninteracting closed-shell SR
fragments will not change the dimensionality of the original
MR model space, since the corresponding direct-product
space has the same dimension.

Fortunately, the hierarchical structure of the SEC-based FS-
MRCC theory ensures that the current-sector space has a proper
direct-product form with respect to the lower sectors of the Fock
space. Hence, SEC-FS-MRCC methods can provide a size-
consistent description of such phenomena as charge-transfer
excitations, where the excitation energy [for example, in the
(1,1) sector] in the separated limit equals the sum of the
ionization [(0,1) sector] and electron-attachment [(1,0)
sector] energies. This is because the corresponding compo-
site (1,1)-sector linear space is a direct product of the (0,1)-
and (1,0)-sector spaces. Thus, the SEC-FS-MRCC theory
has an additional property of maintaining size-consistency
between different sectors of the Fock space. Apart from a
general size-consistency test (like that described above), the general-
ized-extensivity test49,398 is always applicable in FS-MRCC and
HS-MRCC theories.

For the sake of completeness, we should add that the basic FS-
MRCCSD method has been extended to include triply excited
clusters, either fully203,204 or approximately.205,206 Kaldor and co-
workers204,207 succeeded to access (0,n)/(n,0) sectors where
0 e n e 6, and also (1,2)/(2,1) sectors.197 Several schemes for
calculating molecular properties within the FS-MRCC framework
have been suggested.208�211,459,460 The FS-MRCC theory was
also employed in studies of electron scattering.212 A relativistic
variant of the FS-MRCC approach is available.213,214
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4.2. Intermediate Hamiltonian Fock-Space Multireference
Coupled-Cluster Approach

Despite the attractive generality of the FS-MRCC theory, in
practical calculations it severely suffers from the same intruder
state problem215 that made impractical the CAS-SU-MRCC
approach. Insufficient separation of the model-space roots
from the external-space roots (from the first-order interaction
space) causes severe convergence problems, making the CAS-
FS-MRCC approach inapplicable to most chemical problems.
Consequently, similarly to the HS-MRCC theory, the FS-
MRCC theory has been extended to incomplete and general
model spaces (IAS/GMS-FS-MRCC) that helped to partially
overcome the intruder state problem.98,199,200,202,216�218,451

Despite some other attempts to restore convergence,219,220 a
real resurrection of the FS-MRCC formalism occurred due to
the appearance of the so-called intermediate Hamiltonian (IH)
technique.116

The intermediate Hamiltonian technique was introduced by
Malrieu,116 who originally applied it to circumvent the intruder
state problem in theMR formulation of perturbation theory. The
technique was adopted for the FS-MRCC theory by Mukherjee
and co-workers,136,413 by Koch,414 by Meissner,137,221 and later
by Kaldor and co-workers.138,233 The scheme of Meissner has been
extensively developed in the works of Musiaz and Bartlett.222�227 All
formulations are called IH-FS-MRCC, although we will mainly focus
on the IH-FS-MRCC approach of Meissner because of its elegant
theoretical structure based on similarity-transformations. Neverthe-
less, other schemes will also be discussed.

In general the so-called intermediate space is a special “buffer” space,
namely, a subspace of the external space that is “energetically” close to
the model space. However, in Meissner’s IH-FS-MRCC scheme137

the intermediate space is spanned by all excited determinants, which
can be reached from the model space by an action of the current�
sector cluster operator, Ŝ(k,l), thus coinciding with the external space.
In such a case the dimension of the intermediate space in each sector
is equal to the number of unknown cluster amplitudes defining the
unknown cluster operator Ŝ(k,l). In general, one can distinguish four
spaces in the IH-FS-MRCC theory:
1. model (main) space PM with a projector P̂M = ∑μ|μæÆμ|;
2. intermediate space PI with a projector P̂I = ∑x|xæÆx|

(determinants from the intermediate space will be desig-
nated as |xæ, as former external-space determinants;

3. residual external space Q with a projector Q̂ = ∑y|yæÆy| (|yæ
designates the remaining external-space determinants not
included in the intermediate space);

4. the orthogonal-complement space Q0 with a projector Q̂ 0 = Î �
(P̂M + P̂I + Q̂ ) = ∑z|zæÆz|. This space cannot be directly
reached by the action of the cluster operator Ŝ(k,l) on the
reference function, |Φn

(k,l)æ (PI and Q can).
Thus, the original external space splits into the intermediate

space and the residual external space (which can become
empty). The resolution of identity in a particular sector of the
Fock space reads as

Îðk, lÞ ¼ P̂ðk, lÞM þ P̂ðk, lÞI þ Q̂ ðk, lÞ þ Q̂ 0ðk, lÞ ð4:2:1Þ
The main goal of the IH-FS-MRCC scheme of Meissner is to

reformulate the standard iterative FS-MRCC equation solver
(based on the effective Hamiltonian) to a more robust linear-
algebraic procedure such as amatrix diagonalization (while keep-
ing the results unchanged). The peculiarity of the approach of
Meissner is the use of the entire external space as the

intermediate space. Meissner’s scheme can be elegantly
formulated137 via the similarity transformations of the original
many-body Hamiltonian. The first similarity-transformation
reads as

~̂H ¼ e�X̂ðe�T̂ĤeT̂ÞeX̂ ¼ e�X̂ Ĥ eX̂ ð4:2:2Þ
where T̂ is the SRCC cluster operator obtained in the (0,0)
sector and

X̂ ¼ fe~̂S � 1gP̂ðk, lÞM ð4:2:3Þ
It follows that X̂ is nilpotent:

X̂2 ¼ 0 ð4:2:4Þ
that leads to

~̂H ¼ ð1� X̂Þe�T̂ĤeT̂ð1 þ X̂Þ ¼ ð1� X̂ÞĤ ð1 þ X̂Þ
ð4:2:5Þ

where H̅̂� e�T̂ĤeT̂. One can partition the Ĥ~ matrix as

~̂H¼ P̂MĤ ð1þ X̂ÞP̂M P̂MĤ ðP̂Iþ Q̂ 0Þ
ðP̂I þ Q̂ 0Þð1� X̂ÞĤ ð1þ X̂ÞP̂M ðP̂Iþ Q̂ 0Þð1� X̂ÞĤ ðP̂I þ Q̂ 0Þ

2
4

3
5

ð4:2:6Þ
where the explicit sector numeration was omitted, implicitly
assuming the current (k,l) sector. In the limit of the complete
cluster operator Q̂ 0 = 0 and Î(k,l) = P̂M

(k,l) + P̂I
(k,l). Now the SEC-

FS-MRCC equations given by eq 4.1.24 are equivalent to
nullifying the left-bottom block of the partitioned Ĥ~:

P̂Ið1� X̂ÞĤ ð1 þ X̂ÞP̂M ¼ 0 ð4:2:7Þ
giving

P̂IĤ ð1 þ X̂ÞP̂M ¼ P̂IX̂P̂MĤ ð1 þ X̂ÞP̂M
¼ P̂Ið1 þ X̂ÞP̂MĤ ð1 þ X̂ÞP̂M ð4:2:8Þ

P̂IĤ ð1 þ X̂ÞP̂M ¼ P̂Ið1 þ X̂ÞĤef f P̂M ð4:2:9Þ
where Ĥeff = P̂MH̅̂(1 + X̂)P̂M = P̂MH̅̂{eŜ

~
}P̂M. Because the P̂IĤ~P̂M

block is made zero, the model-space eigenvalue problem is
decoupled:

~̂H jΦðk, lÞ
n æ ¼ P̂ðk, lÞM Ĥ ð1 þ X̂ÞjΦðk, lÞ

n æ ¼ EnjΦðk, lÞ
n æ

ð4:2:10Þ
where n enumerates different eigenstates in the (k,l) sector. If the
cluster operator is complete, then the obtained eigenvalues are
exact. In practice, a truncation of the cluster operator leads to Q̂ 0
6¼ 0, meaning that only the subblock P̂IĤ~P̂M of the (P̂I + Q̂ 0)Ĥ~P̂M
block is rigorously zero. The presence of the nonzero Q̂ 0Ĥ~P̂M
block leads to approximate eigenvalues.

Nevertheless, we still have two separate problems expressed by
eq 4.2.9 and eq 4.2.10. In order to derive the final “one-shot” IH-
FS-MRCC procedure, we need to perform a second similarity
transformation, which changes only the upper off-diagonal block
in eq 4.2.6. Let us define the following operators

Ẑ ¼ P̂IX̂ ð4:2:11Þ

Ŷ ¼ Q̂ 0X̂ ð4:2:12Þ
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such that

X̂ ¼ Ŷ þ Ẑ ð4:2:13Þ

ð1 þ X̂Þ ¼ ð1 þ ŶÞð1 þ ẐÞ ð4:2:14Þ

ð1� X̂Þ ¼ ð1� ẐÞð1� ŶÞ ð4:2:15Þ
where Ŷ Ẑ = ẐŶ = Ŷ Ŷ = ẐẐ = 0 (see eq 4.2.4). Equation 4.2.5 can
be rewritten as

~̂H ¼ ð1� X̂ÞĤ ð1 þ X̂Þ ¼ ð1� ẐÞð1� ŶÞĤ ð1 þ ŶÞð1 þ ẐÞ
ð4:2:16Þ

In Meissner’s IH-FS-MRCC approach, the doubly similarity-
transformed Hamiltonian

~~̂H ¼ ðP̂M þ P̂IÞð1� ŶÞĤ ð1 þ ŶÞðP̂M þ P̂IÞ
¼ ðP̂M þ P̂IÞĤ ð1 þ ŶÞðP̂M þ P̂IÞ ð4:2:17Þ

is called the intermediate Hamiltonian (IH).137 Within a union of
themodel and intermediate spaces, the intermediate Hamiltonian
is related to Ĥ~ (eq 4.2.16) via a similarity transformation:

e�Ẑ ~~̂H eẐ

¼ ðP̂M þ P̂IÞð1� ẐÞð1� ŶÞĤ ð1 þ ŶÞð1 þ ẐÞðP̂M þ P̂IÞ
¼ ðP̂M þ P̂IÞð1� X̂ÞĤ ð1 þ X̂ÞðP̂M þ P̂IÞ � ~̂H

ð4:2:18Þ
thus possessing the same eigenvalue spectrum. A diagonaliza-
tion of the intermediate Hamiltonian (eq 4.2.17) directly yields
the required energy eigenvalues. A subset of the eigenvalues
corresponding to the model space coincides with the eigenvalue
spectrum of the effective Hamiltonian of the standard FS-
MRCC theory.

The intermediate Hamiltonian can be expanded as

~~̂H ¼ ðP̂M þ P̂IÞĤ ðP̂M þ P̂IÞ þ ðP̂M þ P̂IÞĤ Ŷ P̂M

ð4:2:19Þ
where the first term on the rhs is simply the similarity-transformed
Hamiltonian of the SRCC theory, while the second term is the so-
called “dressing”.137,221 The dressing operator Ŷ contains all the
terms of the {eŜ

~
} expansion that produce excitations out of

the intermediate space when acting on the model space deter-
minants. It is important to note that in each sector of the Fock
space the dressing term is always built from the amplitudes
coming from the lower sectors. For example, there is no dressing
in the (0,1) and (1,0) sectors, such that the SEC-FS-MRCC
theory in these sectors is equivalent to the corresponding IP/
EA-EOMCC theory.228 In the (1,1) sector with a truncated
cluster operator Ŝ(1,1) = Ŝ2

(1,1) one has221

Ŷ P̂ð1, 1ÞM ¼ fŜð1, 0Þ2 þ Ŝð0, 1Þ2 þ Ŝð1, 0Þ1 Ŝð0, 1Þ2

þ Ŝð0, 1Þ1 Ŝð1, 0Þ2 þ Ŝð0, 1Þ2 Ŝð1, 0Þ2 gP̂ð1, 1ÞM ð4:2:20Þ
whereas the Ẑ operator gives

ẐP̂ð1, 1ÞM ¼ fŜð1, 0Þ1 þ Ŝð0, 1Þ1 þ Ŝð1, 0Þ1 Ŝð0, 1Þ1

þ Ŝð1, 1Þ2 gP̂ð1, 1ÞM ð4:2:21Þ

It should be noted that the intermediate Hamiltonian, being
expressed diagrammatically, contains disconnected terms. How-
ever, all these disconnected contributions exactly cancel during
the CI-like diagonalization of Ĥ~~, thus preserving rigorous size-
extensivity of the IH-FS-MRCC method137 (obviously if the IH-
FS-MRCC eigenvalue spectrum is the same as the original FS-
MRCC eigenvalue spectrum, the size-extensivity of these roots is
preserved automatically).

Although only the model-space roots are guaranteed to be
exact in the limit, the above IH-FS-MRCC theory does not
explicitly distinguish the model space when diagonalizing the
intermediate Hamiltonian. However, the model space is ex-
posed when constructing the dressing term, (P̂M + P̂I)H̅̂ Ŷ P̂M.
First of all, the required eigenvectors must have the largest
components in the model space. Besides, CI eigenvectors obtained
from the lower sectors of the Fock space must be reexpressed in
terms of cluster amplitudes, which will be subsequently used for
constructing the dressing term in higher sectors of the Fock
space. Note that all model-space roots are required. The
necessary formulas are based on dividing the space into the
model space and the external space, partitioning the Hamiltonian
matrix accordingly, and considering the block eigenvalue
problem227

HPP þ HPQ S ¼ Hef f ð4:2:22Þ

HQ P þ HQQ S� SHef f ¼ 0 ð4:2:23Þ
where

S ¼ CQCP
�1 ð4:2:24Þ

Hef f ¼ CPECP
�1 ð4:2:25Þ

assuming that CP is an invertible matrix that contains all
model-space eigenvector components, whereas CP x CQ

specifies the complete eigenvectors of H obtained by the
diagonalization of Ĥ~~ .

Equations 4.2.22�4.2.25 are also useful in analyzing
interconnections between the IH-FS-MRCC theory and the
equation-of-motion CC approach (EOMCC).227,235�239 Musiaz and
Bartlett suggested an alternative way of calculating the dressing
term of the intermediate Hamiltonian, presenting some advantages
during the conversion of CI coefficients to FS-MRCC cluster
amplitudes.227 Indeed, as one could see from eq 4.2.19, the
intermediate Hamiltonian is just the EOMCC Hamiltonian plus
the dressing term. The latter serves for restoring additional size-
consistencywhen describing chemical phenomena involving different
sectors of the Fock space. A close relation to the EOMCC approach
might be useful in devising a scheme for calculating analytic energy
gradients within the IH-FS-MRCC theory (still unavailable).

The above IH-FS-MRCC formulation of Meissner is not
unique. Other IH-FS-MRCC approaches have been pre-
sented by Mukherjee and co-workers136,413 and Kaldor and
co-workers.138,233 The two approaches are similar, originat-
ing from the quasidegenerate perturbation theory.412 These IH-
FS-MRCC methods are more pragmatic in the sense that the
intermediate space is chosen to be a subspace of the original
external space, which is sufficient to separate the model-space
roots from the external roots. Thus, in practical implementa-
tions (with a truncated cluster operator) one deals with all
four spaces, PM, PI, Q, and Q0. Usually the union PM x PI is of
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CAS type (in order to achieve rigorous size-extensivity). Both
IH-FS-MRCC formulations exploit the shifted Bloch equation,
where the shift is used to make all relevant energy denomi-
nators large enough, thus stabilizing convergence. The basic
shifted Bloch equation in Mukherjee’s IH-FS-MRCC scheme
is136

Q̂ ½ðĤ0 þ Ŵ0Þ, feŜg�ðP̂M þ P̂IÞ þ Q̂ V̂feŜgðP̂M þ P̂IÞ
¼ Q̂feŜgV̂feŜgðP̂M þ P̂IÞ ð4:2:26Þ

~~̂H � ðP̂M þ P̂IÞV̂feŜgðP̂M þ P̂IÞ ð4:2:27Þ
where a conventional PT partitioning of the Hamiltonian, Ĥ =
Ĥ0 + V̂ , is used, and Ŵ0 is the shift operator defined exclusively
in the intermediate space, PI. The idea is to introduce suitable
QrPI transition components of {eŜ} such that possible quasi-
degeneracy between the PI- and Q-space functions is avoided
via suitable shifts.136 Provided that PM x PI is large enough,
the model space, PM, is automatically well-separated from Q,
since PM ⊂ PM x PI and (PM ∪ PI) ∩ Q = L. The formalism is
rigorously size-extensive/size-intensive if Ŵ0 is additively
separable.

An alternative “buffered” IH-FS-MRCC scheme was suggested
by Kaldor and co-workers.138,233 Again the union PM x PI is
supposed to be of CAS type and a nonempty Q space serves to
account for the dynamic electron correlation. The basic shifted
Bloch equation is

Q̂ ððE� ĤÞfeR̂gÞCðP̂M þ P̂IÞ

¼ Q̂ ðfeŜgðE� ĤÞfeR̂gÞCðP̂M þ P̂IÞ ð4:2:28Þ

where two normal-ordered CC wave operators are used, {eŜ} and
{eR̂}, while the cluster operators Ŝ and R̂ are related. E is an
arbitrary shift parameter. Analogously, the QrPI transition
components of {eR̂} serve for separating the (PM x PI) and Q
spaces.138,233 Upon fulfilling, the criterion

Q̂ ŜP̂M ≈ Q̂ R̂P̂M ð4:2:29Þ
confirms that the intermediate space is adequate. This IH-FS-
MRCC formalism is also size-extensive due to connectivity of the
equations. In practical versions the results are slightly dependent
on the value of the shift parameter, E.138

Kaldor and co-workers also formulated a relativistic variant of
the IH-FS-MRCC method.229 The method has been extensively
employed in highly accurate studies of heavy atoms229�233 and
even in a model study of quantum dots.234 Importantly, Landau
et al. suggested a mixed-sector variant of the IH-FS-MRCC
method (MIH-FS-MRCC), where flexibility in constructing
the model space is enhanced by mixing different sectors of the
Fock space.201 This brings relaxation to the lower sectors of the
Fock space and adds absent components to the higher-sector
wave functions, thus improving the description of the corre-
sponding electronic states.

4.3. Conclusions: Genuine Fock-Space Multireference
Coupled-Cluster Theory

Due to its flexibility the Fock-space MRCC theory is very
attractive for spectroscopy, enabling simultaneous considera-
tion of several electronic states of different character (ionized,

electron-attached, excited, shake-ups, etc.). The intermediate
Hamiltonian formulation of the FS-MRCC theory has resolved
the intruder state problem, making possible its practical use.
The IH-FS-MRCC approach is rigorously size-extensive/size-
intensive and provides a size-consistent description of a wide
variety of MR chemical problems. The theory also provides a
framework for formulating additional size-consistency correc-
tions to the EOMCC scheme.235�239 Another important aspect
is that the FS-MRCC theory is also applicable to certain
problems encountered in atomic and nuclear physics. As we
have pointed out, a relativistic variant of the IH-FS-MRCC
theory is already available. It was shown to yield highly accurate
results in studies of heavy atoms.

Unfortunately, the FS-MRCC method and its intermediate
Hamiltonian formulations are far from being “black-box” in
use, especially in higher sectors of the Fock space. In order to
proceed to a certain higher sector, one must obtain all relevant
Hamiltonian roots in all preceding lower sectors that might be
expensive from the computational point of view. Also for
higher sectors the orbital relaxation effects will soon become
significant, since the orbitals obtained in the (0,0) sector
become progressively less optimal in higher sectors. Another
noticeable drawback is an incompleteness of SEC-FS-MRCC
wave functions in higher sectors. For this case a proper
“completing” technique should be developed. Also schemes
for evaluating analytic energy gradients, transition moments,
and molecular properties are highly desirable. Besides, the FS-
MRCC/IH-FS-MRCC equations rapidly become very com-
plicated (in higher sectors), such that a symbolic algebra tool is
required to derive, factorize, and code them. The IH-FS-
MRCC approach is still awaiting a robust and efficient com-
puter implementation, which would allow its practical use for
chemically interesting problems.

5. ALTERNATIVE MULTIREFERENCE COUPLED-
CLUSTER METHODS

5.1. The Complete-Active-Space State-Specific Multi-
reference Coupled-Cluster Approach Based on the Single-
Reference Formalism

SRCC formalism has always been more attractive than the
genuine MRCC theory because of the conceptual simplicity and
efficient black-box implementations of the former. A possibility of
describing MR phenomena, yet staying within the SRCC form-
alism, stimulated extensive studies in this direction. A straightfor-
ward addition of higher excited clusters into the SRCC ansatz will
finally solve anyMR problem, because the corresponding SRCC
wave function is exact in the limit. However, the computational
cost of such methods (CCSDT, CCSDTQ, etc.) very quickly
becomes prohibitive (o3v5, o4v6, etc.), unless some localized
approximations are employed (for a reasonable accuracy, a
linear-scaling regime can be achieved, in principle). Even with
contemporary computational resources, a full-triples CCSDT
calculation is affordable only for small molecular systems. Twice
increasing the system size (both the number of electrons and the
number of virtual orbitals) leads to a 23+5 = 256 times more
expensive calculation! From the other side, triples, quadruples,
etc. do not constitute the first-order interaction space with
respect to a particular reference determinant (they are not
directly coupled with that determinant via the Hamiltonian). It
looks unreasonable to explicitly include all triples, quadruples,
etc. clusters in the CC ansatz. As we already know, MRCC
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methods introduce the concept of amultidimensional model space
which defines
(1) the minimal space (spanned by reference determinants)

that is required for constructing an adequate zeroth-order
wave function in order to provide a qualitatively correct
description of the correlated problem and

(2) the first-order interaction space which comprises all single
and double excitations with respect to each reference
determinant. The first-order interaction space implies a
set of independent variables (cluster amplitudes, for
example) required for an accurate representation of the
wave function in this space, such that quantitatively correct
results can be obtained (to a reasonable accuracy). The
amount of unknown variables does not have to be equal to
the dimension of the first-order interaction space (it just
must be sufficient for an accurate representation of the
wave function in this space).

Because the dimension of the model space is usually quite
small and the complete first-order interaction space includes only
singles and doubles with respect to each reference determinant,
the amount of variables involved in an MRCC theoretical model
is roughlyM times greater than the corresponding amount used
in the conventional CCSD approach (M is the dimension of the
model space). It turns out that one can employ the concept of a
multidimensional model space, yet operationally staying within
SRCC formalism. We call such methods alternative MRCC
approaches (alt-MRCC), contrary to the genuine MRCC meth-
ods (gen-MRCC). Most alt-MRCC approaches are state-specific,
describing one electronic state at a time. In such a way all the
attractive features of the SRCC theory are preserved while the
underlying wave function is constructed following the MRCC
route (by introducing amultidimensional reference space with the
corresponding first-order interaction space).

A very general state-specific alt-MRCC framework is based
on the CC ansatz originally suggested by Oliphant and
Adamowicz.161,162 Summarizing numerous developments since
then,163�168,242�253,434,435 we will refer to all relevant alt-MRCC
approaches based on the SRCC formalism as the SRMRCC
theory. The general form of the SRMRCC ansatz168 is

jΨæ ¼ eT̂
extð1 þ ĈintÞj0æ ð5:1:1Þ

where |0æ is a particular determinant from a multidimensional
reference space. By acting on |0æ the (1+Ĉint) operator generates
the complete multidimensional reference function (by internal
excitations in the reference space)

jΨð0Þæ � ð1 þ ĈintÞj0æ ¼ j0æ þ ∑
μ 6¼0

Cμjμæ ð5:1:2Þ

Originally SRMRCC methods employed a CAS model
space,161,162 leading to a fully exponential form of the CAS-
SRMRCC ansatz

jΨæ ¼ eT̂
ext
eT̂

int j0æ ð5:1:3Þ
where

eT̂
int j0æ ¼ ð1 þ Ĉint

CASÞj0æ ð5:1:4Þ
The use of IAS/GMS model spaces in SRMRCC theory is
discussed in the next subsection. As usual, the CAS model space
is supposed to be adequate for a qualitative description of the MR
problem under consideration. It is expected to capture the major

nondynamic/static electron correlation effects. The internal clus-
ter operator T̂ int as well as any product of T̂int generates
excitations solely within the active space (internal excitations):

T̂ int
k ¼ 1

k!k! ∑A1:::Ak
I1:::Ik

tA1:::Ak
I1:::Ik τ̂A1:::Ak

I1:::Ik ð5:1:5Þ

The standard orbital partitioning is used (Figure 4). The CAS
cluster operator T̂ int is complete in the active orbital space
(contains all possible internal excitations).

As one can see, the SRMRCC ansatz in eq 5.1.1 is built on top
of one particular reference determinant |0æ, which is called the
formal reference determinant, or simply the formal reference. The
formal reference determinant |0æ specifies the global Fermi
vacuum such that all reference determinants as well as all other
determinants are defined as excitations with respect to this formal
reference determinant.161,162 The entire wave function obeys the
intermediate normalization with respect to the formal reference
determinant:

Æ0jΨæ ¼ Æ0jeT̂extð1 þ ĈintÞj0æ ¼ 1 ð5:1:6Þ
The remaining external cluster operator T̂ext generates external

excitations (excitations out of the model space) which are
supposed to provide an adequate description of the dynamic
electron correlation. In principle, one can define T̂ext quite
arbitrarily (Ĉint also), resulting in different variants of the
SRMRCC theory. However, the most natural (physically
motivated) choice is to include all single and double external
excitations with respect to each reference determinant, thus explicitly
accounting for the entire MR first-order interaction space. This
canonical CAS-SRMRCC approximation, advocated by Ivanov
and Adamowicz, is called the complete-active-space coupled-cluster
method with singles and doubles, CASCCSD.168 It was shown to
be highly accurate in resolving MR problems.82,168,246�253

Operationally, T̂ext involves selected higher excited clusters
(triples, quadruples, etc. with respect to |0æ). For example, in
the CASCCSD approach, one includes all single and double
excitations with respect to each reference determinant, but all of
them are redefined as excitations with respect to |0æ:

jΨæ ¼ eT̂
ext
1 þ T̂ext

2 þ ~̂T ext
3 þ ~̂T ext

4 þ ::: þ ~̂T ext
M þ 2

�ð1 þ Ĉint
1 þ ::: þ Ĉint

M Þj0æ ð5:1:7Þ
whereM is the highest excitation rank of a reference determinant
(with respect to |0æ) and the tilde means that only selected
external clusters of this excitation rank are included. Because
the CASCCSD ansatz includes all single and double excitations
with respect to each reference determinant, it automatically
comprises all important semi-internal excitations. The corre-
sponding restricted T̂~k

ext operators are defined as

" k g 3 :

~̂T ext
k ¼ ∑

A1 < ::: < Ak�2 < a1 < a2
i1 < i2 < I1 < ::: < Ik�2

tA1:::Ak�2a1a2
i1 i2I1:::Ik�2

τ̂A1:::Ak�2a1a2
i1 i2I1:::Ik�2

ð5:1:8Þ
where components without inactive indices are excluded. In
SRMRCC theory, all cluster operators commute. Besides the
canonical CASCCSD approach, simplified variants have been
suggested with a more restricted T̂ext operator.242�245,260
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SRMRCC cluster amplitudes can be obtained by solving
restricted general-order SRCC equations168,245,434

" Æxj ∈ ðP ∪ Q \ P0Þ : ÆxjðĤeT̂1 þ T̂2 þ ~̂T 3 þ ::: þ ~̂T LÞCj0æ ¼ 0

ð5:1:9Þ
while the energy is computed as

E ¼ Æ0jðĤeT̂1 þ T̂2 þ ~̂T 3 þ ::: þ ~̂T LÞCj0æ ¼ Æ0jðĤeT̂1 þ T̂2ÞCj0æ
ð5:1:10Þ

where Ĥ does not contain higher than two-body terms, and T̂k =
T̂k
int + T̂k

ext. The SRMRCC equations are connected and the
resulting method is size-extensive. Moreover, the projected
Schr€odinger equation is satisfied.

Taking advantage of the SRCC based formulation, one can
immediately write down the SRMRCC Lagrangian:

~E ¼ Æ0jð1 þ Λ̂
int þ Λ̂

extÞe�T̂ int
e�T̂ext

ĤeT̂
ext
eT̂

int j0æ
ð5:1:11Þ

where L̂int and L̂ext operators have the same meaning as in the
standard SRCC theory 254,255 (their structure in analogous
to (T̂ int)+ and (T̂ext)+, respectively). Having determined L̂int

and L̂ext, any energy derivative can be computed as

∂~E
∂χ

¼ Æ0jð1 þ Λ̂
int þ Λ̂

extÞe�T̂int
e�T̂ext∂Ĥ

∂χ
eT̂

ext
eT̂

int j0æ
ð5:1:12Þ

The theory of analytic first and second derivatives has been
developed for SRCC/SRMRCC approaches with an arbitrary
excitation operator.254,255

The presence of higher excited clusters in the SRMRCC
ansatz makes the working equations rather complex, sometimes
involving thousands of distinct diagrams. As a remedy, several
automated schemes have been suggested.168,245,256�259,377 It can
be shown that regardless of the highest excitation rank in the
cluster operator the CASCCSD approach still scales as O(N6),
provided that the active-space dimension does not grow with the
number of particles in the system. However, the prefactor in this
dependence can grow quite fast with the active space size.

The major formal drawback of the SRMRCC theory is the lack
of invariance with respect to the choice of the formal reference
determinant.145,245,247 Thus, reference determinants are not trea-
ted on an equal footing. The SRMRCC ansatz is symmetry-broken
in this sense. In practice, one should always pick the leading
determinant (or one of them) as the formal reference, ensuring
the fastest convergence of the exponential expansion. A wrong
choice of the formal reference determinant would amplify the
weight of higher excited clusters and, more dangerously, the
configurational weight of disconnected cluster products. This can
severely affect the accuracy of the SRMRCC approach, introduce
discontinuities to the calculated PES, or even cause convergence
problems. In practice, if the exact wave function is dominated by a
nondegenerate determinant, the SRMRCC ansatz built on top of
this determinant does not have noticeable problems with sym-
metry contaminations (provided that the model space is ade-
quate and the external space contains the major part of the first-
order interaction space). However, if the leading determinant is
degenerate, it can introduce a noticeable symmetry distortion into
the wave function247 when taken as the formal reference. In order

to alleviate this problem, Lyakh et al. suggested the symmetry-
corrected CASCCSD approach called XCASCCSD247 (X stands
for “eXtended”). In this approach, the projection space is
reduced by forming proper linear combinations of symmetric
excitations. The authors implemented such a procedure for the
case when the exact wave function is dominated by a pair of
degenerate determinants (either spin-momentum degenerate, like
open-shell singlet/triplet states, or spatial-momentum degenerate).
The XCASCCSD approach was shown to significantly reduce
the symmetry contamination of the original CASCCSD ansatz
built upon a degenerate determinant, while preserving the high
accuracy of the energy obtained.247 However, in general, the
XCASCCSD scheme introduces disconnected cluster ampli-
tudes, thus violating size-extensivity.

CAS-SRMRCC methods (as MRCC approaches) require
specification of the model space by selecting active orbitals.
Hence they are less suitable for a black-box implementation. In
order to alleviate this deficiency, a semiautomated active-orbital
selection scheme was suggested.82 A performance of seminatural
orbitals was studied by K€ohn and Olsen.435

A general-order linear-response technique for treating excited
electronic states has been developed on top of the general-
order SRMRCC approach.261 There are also several other
implementations of the active-space-based EOMCC scheme
available.262�264,417�419 Besides restricting the cluster opera-
tor to contain only selected higher excitations, all these
approaches (in a similar way) restrict the linear EOM CI
operator, which generates excited state vectors.

In the context of SRMRCC theory, it is interesting to note that
Nakatsuji also suggested a MR variant of his SR symmetry-
adapted-cluster (SAC) theory, called MR-SAC or MEG4 (the
fourth variant of the mixed exponentially generated wave func-
tion ansatz).92 Conceptually, the MR-SACmethod is close to the
SRMRCC approach. As the SRMRCC theory extends the
applicability of the SRCC theory to MR cases, yet staying within
the SRCC formalism, the MR-SAC approach extends the applic-
ability of the SAC method in the same manner. However, the
MR-SAC method has some special features because of which it
can be classified as a semiadaptive approach. The so-called
adaptive methods will be highlighted at the end of this section.

5.2. Other Single-Reference-Based Multireference Coupled-
Cluster Approaches

Despite all the attractive features of the CASCCSD method,
its computational cost can still be too high when employing large
active spaces. Li and Paldus suggested a simplified version where
they replaced the CASmodel space by the GMSmodel space and
linearized the CASCCSD equations for higher-than-double
projections:265

" Æxj ¼ ÆxjðQ̂ 1 þ Q̂ 2Þ :
ÆxjðHeT̂1 þ T̂2 þ ~̂T 3 þ ::: þ ~̂T LÞCj0æ ¼ 0 ð5:2:1Þ

" Æxj ¼ ÆxjQ̂ k, k g 3 :

Æxj½Ĥ, T̂1 þ T̂2 þ ~̂T 3 þ ::: þ ~̂T L�j0æ ¼ 0 ð5:2:2Þ
where Q̂ k is a projector associated with k-fold excited determi-
nants (with respect to |0æ) and L is the maximal excitation rank in
the cluster operator. The cluster operator (T̂1 + T̂2 + T̂~3 + ... + T̂~L)
is constructed to include all single and double excitations
with respect to the GMS model space. The method is called
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plMR-CCSD, where “pl” stands for “partially-linearized”.265

The plMR-CCSD approach has been augmented with perturba-
tive corrections.265 Because of the partial linearization of equa-
tions, the corresponding approach is less computationally
demanding.

An alternative SRMRCC formalism that partially includes 3-
and 4-fold excited clusters was suggested by Xu et al.269 The
approach can be viewed as a restricted CCSDTQ method where
the restrictions on the cluster operators are based on the concept
of an electron pair. The resulting method scales as O(N7). It can
be used in calculations of ground electronic states possessing a
moderate MR character, for example, for single-bond breaking
processes.269 However, a later development of Li and co-workers
seems to be more promising.270 The approach, called CCSD(T)-h,
combines the active-space-based selection of higher excited clusters
(as in the CASCCSD scheme truncated at triples, or, equivalently,
CCSDt167) with the perturbative triples (T) correction.270 After
obtaining the CCSDt wave function, the values of other triply
excited amplitudes are estimated using the perturbation theory in
the form of the (T) correction. Although the correlation scheme
itself is not radically new, in ref 270 the authors suggested an
original automated procedure for selecting active orbitals. The
procedure is based on the use of the corresponding UHF
orbitals,271,272 where each α UHF orbital is assigned a unique
β counterpart. Then the orbital overlaps can be used to estimate
the importance of an orbital in the ground-state MR process under
consideration. This gives a possibility to select the most important
orbitals automatically. Unfortunately, this active-orbital selection
scheme cannot be generally applied to excited-state problems.

Another interesting approach is based on a complete removal
of the static electron correlation by means of a rigorous spin-
adaptation of the CC wave function. Following the classical
works of Paldus and co-workers,69�73 one can formulate a spin-
free SR/MR CC theory operating in the space of configuration
state functions (CSF)69�73,77,78 (Ŝ2 eigenfunctions). Thus, an
artifact of the necessity of proper spin-coupling of determinants is
completely removed. For example, a multireference open-shell
singlet state becomes single-reference when the CC wave func-
tion is expanded in terms of CSF. However, the price paid is the
extreme complexity of the corresponding spin-adapted equations
and their explicit dependence on the symmetry of the state being
calculated. The complications come from the appearance of
noncommuting spin-free excitation operators in the exponential.
So far, only doublet and low-spin singlet/triplet electronic states
have been considered,69�73,77,78 for which an automated for-
mula/code generator was written.69�73

For the sake of completeness, we will briefly mention other
nonstandard SRCC approaches that attempt to include the
effects of higher excitations but do not normally use the model
space concept (purely SRCC formulation). A particular route
being pursued for a long time is based on systematic
(noniterative) perturbative corrections to the original SRCC
approach (e.g. to CCSD). There are numerous so-called renor-
malized (R-CC) and completely renormalized (CR-CC) ap-
proaches available.262,273,415,416,420 The original renormalization
procedure was based on the following disconnected energy
functional:

FðΨÞ ¼ ÆΨjĤeT̂ j0æ
ÆΨjeT̂ j0æ ¼ ECC þ ÆΨjQ̂ 0ĤeT̂ j0æ

ÆΨjeT̂ j0æ
¼ ECC þ δCC ð5:2:3Þ

where ÆΨ| is the exact wave function (unknown in practice),
while ECC and eT̂ correspond to a certain conventional SRCC
approach “suffering” from MR effects, and δCC is the energy
correction sought. In practice, ÆΨ| is approximated using pertur-
bation theory or imported from an MRCI calculation.274 The
projections against components of the orthogonal-complement
space (in the enumerator) are sometimes called the CCmoments
(they represent residuals from the subspace where the Schr€odinger
equation has not been satisfied due to the use of a truncated CC
ansatz). An approximate account of these residual components
forms the basis of the so-called method of moments274,421

(MMCC), which extends the applicability of the underlying
SRCC/EOMCC methods to moderate-character MR problems.
The original R-CC and CR-CC approaches were not size-
extensive due to the use of the disconnected energy functional
(eq 5.2.3). Subsequently, in order to restore size-extensivity, the
asymmetric CC energy functional275 was employed

FðΨÞ ¼ Æ0jð1 þ Λ̂ÞððP̂0 þ Q̂ 0Þ þ Q̂ 0ÞðĤeT̂ÞCj0æ
¼ ECC þ δCC ð5:2:4Þ

where the exact bra-eigenvector is represented as Æ0|(1 +
L̂ ).276,277,422 Obviously, the latter is approximated in practice.

The method of moments (a quite general route for perturba-
tive corrections) was also incorporated with different EOMCC
approaches263,278,417�419,423 (for treating excited states). Since
the MMCC methods are derived in the spirit of perturbative
corrections (as the CCSD(T) approach), there is no self-
consistency brought into the formalism (the MMCC corrections
are noniterative). Such approaches work satisfactory when the
MR perturbation is relatively small, for example, when describing
moderate MR phenomena like single-bond breaking.273,274,276

But they often fail to provide a quantitative (or even qualitative)
description of severe MR problems like multiple-bond
breaking416 or doubly excited states.372 An exception is the
externally corrected MMCC methods, where the description of
the nondynamic/static electron correlation comes from the
MRCImethod (infinite-order approach).274,421 Another efficient
route is to combine the MMCC technique with the SRMRCC
theory. The MMCC scheme has been also applied to certain
genuine MRCC methods, yielding noniterative energy correc-
tions in a similar fashion.274

Even earlier the CC functional was utilized in deriving the
ΛCCSD(T) method, which is also based on the perturbative-
triples correction.280,430,431 In practice, ΛCCSD(T) is a more
robust analog of the CCSD(T) approach for moderate MR
problems.280�282,430 Because of its quasivariational nature, the
method can be useful in describing single-bond-breaking pro-
cesses. Importantly, the ΛCCSD(T) method is rigorously size-
extensive and has proper orbital invariance properties. Note that
the R-CCSD(T), CR-CCSD(T), and ΛCCSD(T) approaches
involve a noniterative computational step scaling as O(N7).

A doubly exponential energy functional

EECC ¼ Æ0jeŜþe�T̂ĤeT̂e�Ŝþ j0æ ð5:2:5Þ
was employed to derive the so-called extended CC approach
(ECC),275,283�286 which partially alleviates the deficiency of
ordinary SRCC methods in describing bond-breaking processes.
Importantly, the ECC approach yields a fully connected two-
density cumulant454 (while conventional SRCC theory does
not). Unfortunately, ECC methods are relatively computation-
ally expensive.
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A systematic study of the variational and quasivariational
SRCC approaches based on the hermitian energy functional

E ¼ Æ0jeT̂þ
ĤeT̂ j0æ

Æ0jeT̂þeT̂ j0æ ¼ Æ0jðeT̂þ
ĤeT̂ÞCj0æ ð5:2:6Þ

was undertaken by Szalay et al.287 Unfortunately, the corre-
sponding equations either involve nonterminating series or still
require both left-hand and right-hand solutions. Thus, only
perturbative approximations were feasible in practice. Recently,
Evangelista implemented and thoroughly studied the extended,
unitary, and variational CC theories of general order,409 with a
conclusion that the improvement over the conventional SRCC
theory is not worth the effort. The XCC approach was also
applied in calculations of molecular properties.455,456

A CCmethod accompanied by a simultaneous optimization of
valence orbitals is available under the name the valence-orbital-
optimized (VOO-CC) approach.288,289 The orbital optimization
partially alleviates shortcomings of ordinary SRCC methods in
MR situations. The VOO-CC energy functional is made sta-
tionary with respect to cluster amplitudes, Λ-coefficients, and
valence orbitals as well. Note that, in general, the orbital-opti-
mized CC theory might not be exact in the limit.436 The VOO-
CC scheme has been extended for excited states via the EOMCC
approach.290 In practice, the correspondingmethods can provide
a reasonable description of moderate-character MR problems.

The arguments of the generalized valence-bond (GVB) theory
were used in deriving the so-called imperfect-paring and perfect-
pairing approximations to the CASSCF method,291,292 where
only certain types of amplitudes are kept in the CAS exponential
ansatz, thus reducing the cost of the method and allowing the use
of larger active spaces. A promising exponential-like expansion is
also used in the GVB-CC method of Head-Gordon and co-
workers:432

jΨæ ¼ jΨ0æ þ ∑
K < L

tKLjΨKLæ

þ 1
2! ∑

K < L,
M < N

tKLtMN jΨKL,MNæ þ ::: ð5:2:7Þ

where |Ψ0æ is an antisymmetrized product of singlet orbital pairs,
|ΨKLæ is obtained from |Ψ0æ by “re-coupling” two orbital pairs,K
and L, while tKL is the corresponding amplitude. The approach
efficiently treats the effects of the nondynamic/static electron
correlation. In principle, it can “break” any chemical bond
properly. However, in order to deliver “chemical accuracy”, the
corresponding ans€atze must be augmented with some treatment
of the dynamic electron correlation.291�295

5.3. Externally Corrected Multireference Coupled-Cluster
Methods

Upon analyzing all preceding methods, one could notice that
the exponential SRCC ansatz is ideally suited for accounting for
the dynamic electron correlation, while the nondynamic/static
electron correlation effects require CI-like schemes to be devised
on top of the CC theory. It is known that the MRCI method is
robust and quite efficient in solving true MR problems (of small
size). However, MRCI needs a proper account of the dynamic
electron correlation, especially when considering larger molecular
systems (size-extensivity corrections). Having realized this, Li
and Paldus suggested several so-called externally corrected (EC)

approaches296�305 where the wave function consists of two parts:
the fixed part imported from a CI calculation and the dynamic
exponential CC part adjusted in the presence of the fixed CI part.
Thus, the fixed CI part corrects the values of cluster amplitudes in the
CC ansatz. The most successful variant is called the reduced multi-
reference coupled cluster method with singles and doubles (RMR-
CCSD).296�301 The RMR-CCSD ansatz can be represented as

jΨæ ¼ eT̂1 þ T̂2 þ ~̂T 3 þ ~̂T 4 j0æ ð5:3:1Þ
where T̂~3 and T̂~4 operators are fixed cluster operators imported from
anMRCI calculation. The amplitudes of these operators are obtained
from the MRCI eigenvector by a well-known CI�CC conversion
procedure (see eqs 2.2.4�2.2.6). Hence, the only variable quantities
in the RMR-CCSD ansatz are singly and doubly excited cluster
amplitudes defining T̂1 and T̂2.

The RMR-CCSD approach was successfully applied in many
MR studies.127,296�301,306,307,309,310,429 However, it has a formal
drawback: the approach is neither size-extensive nor provides a
size-consistent description of the problem (like MRCI).397

Despite the fully exponential form of the RMR-CCSD ansatz
and connectedness of the residual equations, the imported T̂~3
and T̂~4 operators contain disconnected contributions if they come
from a truncated CI calculation. Nevertheless, one can expect
that the size-extensivity error of the RMR-CCSD method will be
smaller than that of MRCI. Another disadvantage is that the
method may have problems when applied to excited states of the
same symmetry as the ground state. In such a case, a collapse to
the ground state can occur because the singly and doubly excited
amplitudes are not restricted in any way. The dimension of the
MRCI vector (required in the RMR-CCSD method) as well as
the amount of imported cluster amplitudes can be reduced by
using the perturbatively selectedCI scheme (PSCI),311 as has been
done for many years in CI technology.

An analogous RMR modification has been applied to the
GMS-SU-MRCCSD method of Li and Paldus. In a similar way
the SU-MRCCSD ansatz is augmented with higher excited clusters,
T̂~3
μ and T̂~4

μ, imported from a multistate MRCI calculation:312

" k : jΨkæ ¼ ∑
μ

Cμ
k e

T̂μ
1 þ T̂μ

2 þ ~̂T
μ

3 þ ~̂T
μ

4 jμæ ð5:3:2Þ

The presence of higher excited clusters was shown to improve
the energies in calculations of small systems.312 However, the
resulting (N,M)-CCSD approach is also not size-extensive (T̂~3

μ

and T̂~4
μ operators contain disconnected contributions if they come

from an MRCI calculation).
A more pragmatic point of view is exploited in the “tailored”

CCSD approach (TCCSD) suggested by Kinoshita et al.313 This
state-specific approach is also based on the SRMRCC fully
exponential ansatz given by eq 5.1.3. In contrast to other
externally corrected methods, the TCCSD approach insists on
a proper structure of the multidimensional reference function

jΨð0Þæ ¼ ∑
μ

Cμjμæ ¼ eT̂
int j0æ ð5:3:3Þ

obtained in a “small” full CI (or full CC) calculation in the CAS
model space:

P̂ĤeT̂
int j0æ ¼ Eð0ÞeT̂

int j0æ ð5:3:4Þ
The singly and doubly excited internal cluster amplitudes (or
even all cluster amplitudes of T̂ int from eq 5.3.4) are inserted into
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the CCSD ansatz and kept “frozen” during the CCSD projections
in the Q space:

" Æxj ¼ ÆxjQ̂ : Æxje�T̂extðe�T̂ int
ĤeT̂

intÞeT̂ext j0æ ¼ 0

ð5:3:5Þ

E ¼ Æ0je�T̂extðe�T̂int
ĤeT̂

intÞeT̂ext j0æ ð5:3:6Þ
In such a way, the T̂ext cluster operator is determined (it is mostly
responsible for the dynamic electron correlation).

The TCCSD approach provides an inexpensive size-extensive way
for “probing”MR problems with a reasonable accuracy. In contrast
to the RMR-CCSD method, it can access the ground and excited
states of the same symmetry because a fixed reference vector pre-
vents collapsing into another electronic state (actually the reference
vector determines which state is being calculated). The error of the
TCCSD approach mostly comes from the lack of relaxation in the
reference space. This also makes the method rather sensitive to the
orbital choice and the active space used.313,314 In order to partially
alleviate this problem, the TCCSD approach has been augmented
with the perturbative-triples (T) energy correction, TCCSD(T).315

Another possible variant of bringing the relaxation into the TCCSD
reference vector is to use a double active space strategy, as suggested
in the enhanced TCCSD approach (eTCCSD).316 In general, the
TCCSDwave function, like any SRMRCCwave function,247 can be
noticeably symmetry-contaminatedwhen an open-shell determinant is
taken as the Fermi vacuum, |0æ (even though the TCCSD energy
might have a reasonable value).

5.4. Equation-of-Motion Coupled-Cluster Methods for Mul-
tireference Problems

The ideas of the Hilbert-space and Fock-space MRCC the-
ories can be combined within the EOMCC scheme41�43 suitable
for MR problems.322,323,326�334,395 From the MR point of view,
the EOM extension (CI vector) introduces the required MR part
of the wave function on top of the SRCC exponential:

ĤR̂k e
T̂ j0æ ¼ EkR̂ke

T̂ j0æ ð5:4:1Þ
where eT̂ (acting on |0æ) generates the global (extensive) part of
the wave function, while a CI-like EOM operator R̂k provides a
“semilocal” correction to the kth eigenstate (intensive part).52,397

Thus, eT̂ mostly describes the (ground-state) dynamic electron
correlation, whereas R̂k is supposed to bring the state-specific
relaxation and describe the nondynamic/static electron correla-
tion. In such a way, the EOMCC approach is usually applied to
excited/ionized/electron-attached electronic states. The flexibil-
ity of the EOM R̂k operator allows accessing different sectors of
the Fock space with a different number of particles (or
quasiparticles) than in the ground-state problem, resembling
the FS-MRCC theory.227,235 The R̂k operator is determined by
solving the EOM eigenvalue problem41�43

½e�T̂ĤeT̂ , R̂k�j0æ ¼ ωkR̂kj0æ ð5:4:2Þ
where ωk = Ek � E0, E0 is the ground state CC energy, and R̂k

commutes with T̂. E0 is size-extensive, while ωk is size-intensive,
keeping the target energy Ek size-extensive (more precisely, core-
extensive).52,53,397

Utilizing the Fock-space strategy, the EOMCC approach can
also be used for calculating MR ground states. For example,
homolytic breaking of a single chemical bond typically leads to
two open-shell fragments, each containing one open-shell electron.
Adding (or removing) two electrons to such a system (one

electron to each fragment) makes both fragments closed-shell.
The corresponding closed-shell determinant can be taken as the
Fermi vacuum and an SRCC calculation (e.g., CCSD) can be
performed, supplying the global exponential part of the wave
function, eT̂|0æ. Then the CI-like operator

R̂ð0, 2Þ ¼ 1
2! ∑i, j

R̂ij þ 1
3! ∑i, j, k, a

R̂a
ijk þ ::: ð5:4:3Þ

takes care of restoring the proper number of electrons, bringing
some relaxation to the wave function and accounting for the
nondynamic/static electron correlation (conventional orbital par-
titioning is given in Figure 4). R̂(0,2) is determined by solving the
EOM eigenvalue problem in eq 5.4.2, thus also determining the
target state energy Ek = E0 + ωk. Figure 6 demonstrates how the
R̂ij operator (first term in eq 5.4.3) generates the CAS(2,2)
reference space for the MR problem. One can see that all needed
N-electron reference determinants appear from the (N+2)-
electron vacuum by removing appropriate pairs of electrons.
Remarkably, in such a way all reference determinants are treated
on the same footing. The MR-EOMCC scheme in which two
electrons are removed from the (N+2)-electron vector is called
theMR-DI-CCmethod (“DI” stands for “double ionization”).322

Analogously, one can start from an (N� 2)-electron closed-shell
vacuum and add two electrons, leading to the MR-DA-CC
method (“DA” stands for “double attachment”).

A proper generalization to larger active spaces would
require more electrons to be added/removed, leading to the
MR-MI/MA-CC theory (“M” stands for “multiple”).322 Using
the Fock-space terminology, one can explicitly specify the sector
of R̂ as R̂(k,l)

k e l :

R̂ðk, lÞ ¼ ∑
n g l

∑
a1 < ::: < ak < ::: < an�lþk

i1 < ::: < il < ::: < in

Ra1:::ak:::an�lþk
i1:::il:::in τ̂a1:::ak:::an�lþk

i1:::il:::in

ð5:4:4Þ

k > l :

R̂ðk, lÞ ¼ ∑
n g k

∑
a1 < ::: < ak < ::: < an
i1 < ::: < il < ::: < in�kþl

Ra1:::ak:::an
i1:::il:::in�kþl

τ̂a1:::ak:::ani1:::il:::in�kþl

ð5:4:5Þ
where τ̂ is an elementary removal/addition/excitation operator,
and Ri1...in

a1...am are the CI coefficients being sought. Usually the MR-
MI/MA-CC excitation operator, R̂(k,l), is truncated after the first
two terms (in each sector).

Being a diagonalization-based theory, the MR-MI/MA-CC
approach does not suffer from the intruder state problem. The
wave function is automatically a spin eigenfunction if the Fermi
vacuum is a nondegenerate closed-shell determinant (and the CC/
EOM projection space is appropriate). Analytic energy gradients
can be evaluated using conventional techniques.424 The refer-
ence determinants are treated on the same footing. Moreover,
since all “active” orbitals are either holes or particles of the
ground-state Fermi vacuum, the approach is invariant to active-
orbital rotations (active-orbital rotations form a subgroup of
either hole or particle rotations). Importantly, the MR-MI/MA-
CC approach naturally reduces to the corresponding SRCC
theory when the problem is of SR character. As in any EOMCC
scheme, a sufficient transferability of the dynamic electron
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correlation from the (N+M)-electron problem to the N-electron
problem is assumed (which is not always true though).

In practice, the above formulation of the MR-MI-CC method
has difficulties if the electronic system becomes unstable after
adding additional electrons. In such cases, the ground state (N
+M)-electron wave function may have potentially “unbounded”
components. The problem can be partially alleviated by a proper
choice of orbitals.322�325 At the same time, the MR-MA-CC
method does not experience this problem, but it might be more
sensitive to the orbital choice (needs proper low-lying virtuals).
Also, MR-MA-CC is more computationally expensive than
analogous MR-MI-CC (the virtual orbital range usually notice-
ably exceeds the occupied orbital range). The other complication
is that higher-sector MR-MI/MA-CC approaches have unfavor-
able computational scaling, unless some active-space-based re-
strictions are imposed on the corresponding tensors.

A conceptually similar way of approaching MR problems with
the EOMCC scheme is used in the spin-flip EOMCC method
(SF-EOMCC).326�332 Here in order to describe aMR electronic
state one starts from the appropriate high-spin determinant in
which all open-shell electrons are given the same spin. Such a
vacuum is utilized in the SRCC calculation (ROHF or UHF),
producing the global eT̂ operator. For example, if one wants to
describe an open-shell singlet electronic state dominated by two
degenerate determinants, then the Fermi vacuum is a high-spin
triplet obtained by a spin-inversion of one of the open-shell
electrons (see Figure 7). The corresponding high-spin open-shell
electronic state is assumed to be of SR character. After the SRCC
calculation, the EOM operator R̂ produces excitations that
change the spin quantum number back, thus describing the
nondynamic/static electron correlation. The formal machinery
does not differ from other EOMCC schemes. Again, the idea is to
find an electronic state of SR character that is believed to be able
to provide a reasonable description of the dynamic electron
correlation for the MR state of interest. This description is
imported by adopting the corresponding exponential cluster
operator. Finally, the nondynamic/static electron correlation
problem is resolved via a CI-like wave operator, which also
captures the state-specific part of the dynamic electron correla-
tion (and orbital relaxation). In general, the final SF-EOMCC
wave function is not a spin eigenfunction. The SF-EOMCC
theory was successfully employed in many chemically interesting
MR studies,326�332 although its generalization to larger active
spaces is plagued with the same problems as described above.

In the context of the EOMCC formalism, we should also mention
the similarity-transformedEOMCC(STEOM-CC) 237�239,425�427,458

and the EOM-CCx236 methods, whose separability properties are
correct (contrary to EOMCC) when describing nonlocal excita-
tions (size-consistent description). Both methods are “mixtures”
of the EOMCC approach and the FS-MRCC theory in lower
sectors of the quasiparticle Fock space. The original EOM

Hamiltonian H̅̂ � e�T̂ĤeT̂ is dressed via FS-MRCC cluster
amplitudes obtained from the (0,1) and (1,0) sectors of the
Fock space. In the STEOM-CC scheme, the second similarity
transformation, Ĝ � {eŜ(0,1)+Ŝ(1,0)}�1e�T̂ĤeT̂{eŜ(0,1)+Ŝ(1,0)},
also serves for partial decoupling of spaces corresponding to
different excitation ranks (singles, doubles, etc.), thus reducing
the intermediate space to a particular excitation rank (the
computational cost is also decreased). The use of the FS-MRCC
dressing extends the size-consistency domain of the STEOM-CC
and EOM-CCx methods to charge-transfer (CT) single excita-
tions, because the necessary amplitudes are imported from the
corresponding lower sectors of the Fock space, thus ensuring a
proper separability in the (1,1) sector (similarly to the FS-(1,1)-
MRCC approach). Formally, conventional EOMCC schemes do
not always provide a size-consistent description ofMR problems,
since the composite space used in the MR problem does not
automatically adopt a direct-product structure with respect to
lower sectors. The use of the hierarchical structure of the FS-
MRCC ansatz provides a remedy in such cases. Importantly, the
STEOM-CC method was extended to deal with excited states
dominated by double excitations.238 Such MR electronic states
are poorly described by standard EOMCC methods. Analytic
energy gradients are available for the STEOM-CC approach.427

5.5. Universal Adaptive and Semiadaptive Coupled-Cluster
Approaches

Until now we have considered the methods of “theoretical
model chemistry”, which are designed to fulfill a series of formal
requirements besides the main requirement of giving quantitative
accuracy. Unfortunately, the latter requirement is often disre-
garded in favor of satisfying some formal methodological proper-
ties. At the early stage of electron correlation theory, the lack of
computational power forced the correlated models to be rather
compact in terms of the number of independent variables used.
Perturbatively selected CI schemes,335,336 natural orbital-based
expansions,337 and spin-adapted approaches gained the maximal
profit from existing computers. As the computer power in-
creased, the formal properties of correlated models attracted
more andmore attention, resulting in the era of “theoretical model
chemistries”.51,338 During this fruitful period, the coupled cluster
theory and its many-body perturbative approximations became
the most prominent paradigms used in the electron correlation
calculations. A set of formal requirements exposed to a theore-
tical model included size-extensivity, size-consistency, exactness
for two electrons, proper orbital invariance, variational structure
and hermiticity, modest computational demands, etc. However,
it turns out that such an ideal method can hardly exist in practice
because of the mutually exclusive nature of some of the above
requirements. Moreover, they leave the actual accuracy of
the method generally unpredictable. As a result, the “model
chemistry” market now contains plenty of different methods,

Figure 6. Generation of the multideterminantal reference function in
the DI-MR-EOMCC method. Active orbitals and electrons are
highlighted.

Figure 7. Generation of the multideterminantal reference function in
the spin-flip EOMCC method. Active orbitals and electrons are
highlighted.
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each of which is suited for its particular set of correlated
problems.

Unfortunately, in most cases the method and the problem are
considered separately. A typical correlated method is constructed
using CI/PT/CC machinery, the reference/external space con-
cept, and the excitation rank hierarchy. Once the method is
constructed, only a few parameters can be adjusted in order to get
the “best” description of a particular electron correlation problem
(simplicity has always been convenient for users). However
(because of some formal requirements), such theoretical models
are often not sufficiently flexible for obtaining the most compact
description of the considered problem with quantitatively correct
results. In general, one set of method parameters can lead to an
incomplete correlated model such that the description of the
problem is inadequate, whereas another set of method parameters
can lead to a redundant model, where the price paid for the
adequate solution is too high (computationally expensive). For
example, the CCSD method may fail in many situations, while
the CCSDT method is too expensive computationally, and
the necessity of an inclusion of all triples is primarily dictated
by the definition of the method and the requirement of rigorous
occ�occ, virt�virt orbital invariances. Moreover, usually one does
not have any reliable accuracy estimates for the results obtained.
The results are produced with “zero liability” (as notified in many
quantum-chemical packages). In some sense, most existing
correlated methods are “static”, meaning that they cannot adjust
to the correlated problem by themselves. There is no internal “truth
criterion” in such a theoretical model that could guarantee
convergence to the right answer (at least with certain confidence).
Instead, the user is fully responsible for finding a correct
method for the problem under consideration (often the search
is completely based on intuition and availability). Even if the
method is classified as a “black box”, its application to an
electronic-structure problem is still far from being so. Therefore,
there is an apparent need in “universal” approaches suited for any
correlated problem from a sufficiently wide class of them. For
example, a method well suited for both SR and MR correlated
problems is highly demanded. More precisely, a universal method
must be able to adjust to the considered correlated problem such that
the number of independent variables used is as compact as minimally
required for obtaining quantitative results (with a reasonable
accuracy). We will call such a property the “adaptivity” of a
method. We will also abandon the term universal and call such
methods adaptive, thus more precisely reflecting their nature. In
order to be adaptive, a method should have an internal conver-
gence criterion controlling the expansion of the set of independent
variables. Thus, we define

An adaptive method for electronic structure calculations is a
theoretical model that is able to vary the set of independent
variables allowing convergence to the full CI limit (or even the
exact result) with reasonable accuracy in a computationally
tractable way.

A “computationally tractable way” means some modest poly-
nomial dependence with respect to the number of electrons,
potentially allowing a linear-scaling regime when proceeding to
sufficiently large systems (obviously only the relative accuracy
can be maintained in this way). Ideally, the adaptivity should be
applied to both the electronic correlation account and the basis set
incompleteness problem. Leaving aside the latter problem, which
recently gained noticeable attention as well,339�342 we will

highlight some adaptive and semiadaptive methods where
the adaptivity is used to efficiently capture MR electron
correlation effects (adaptive methods are still at the early
stage of development). Contrary to the fully adaptive meth-
ods, in a semiadaptive method the selection of an accuracy-
sufficient set of independent variables is done by the user (not
by the method itself).

In principle, the “dynamic nature” of an adaptive method
should allow an automatic fine adjustment to the problem under
consideration. However, at the same time, a rigorous fulfillment of
some formal properties might be violated, although these formal
properties should still hold to a desired accuracy. It is important
to realize that only the extent of violation of formal properties
really matters in practice. An adaptive method converges to the
full CI solution by definition (to some reasonable accuracy).
Hence, the corresponding wave function is exact (correct) to
some precision defined a priori by a user.

We believe it is time to separate a class of approaches that
share the concept of adaptivity one way or another (in particular,
adaptive CC methods). The “ancient” perturbatively selected CI
approaches employ a perturbation-theory-based screening pro-
cedure for constructing the CI configurational space.335 This
scheme was used by Nakatsuji, who introduced a class of
semiadaptive methods based on the SAC/SAC-CI theory, in
particular in the form of SAC-CI-general-R method 343�346 and
exponentially generated CI (EGCI) approaches.347,348 The idea
behind these methods is a selective inclusion of higher CI
excitations, based on the values of singly and doubly excited CI
coefficients and a set of predefined thresholds. One should note
that higher excitations are included in the CI form, albeit this CI
vector is formally generated using disconnected products from
the exponential expansion. For example, in the SAC-CI-general-
R method the singly and doubly excited cluster amplitudes (S1
and S2) of the SAC ansatz 46,47

ÔeŜ1 þ Ŝ2 j0æ ð5:5:1Þ
are selected perturbatively (Ô is a formal symmetry-projector).
Then the similarity-transformed Hamiltonian

e�Ŝ1 � Ŝ2ĤeŜ1 þ Ŝ2 ð5:5:2Þ
is used in a CI diagonalization within the space of singles and
doubles, thus obtaining R1 and R2 sets of CI coefficients (for the
states of interest). Finally, the CI space is augmented by those
higher excitations that are estimated to be important, on the basis
of the cluster decomposition in terms of R1 and R2. This selection
scheme is called exponentially generated CI (EGCI).347 Because
the thresholds are selected manually, we classify this method as
semiadaptive.

Another semiadaptive approach of Nakatsuji is more relevant
to MR problems. The approach is called the mixed exponentially
generated SAC (MEG4/EX-MEG4-SAC, where “EX” stands for
“excited”) or, equivalently, the MR-SAC method.92,348 The
corresponding wave function can be represented as

jΨæ ¼ R̂eŜ1 þ Ŝ2 Ĉj0æ ð5:5:3Þ
where R̂ and Ĉ operators are arbitrary-rank CI operators. Both
R̂ and Ĉ are constructed using the EGCI algorithm described
above. The Ĉ operator is responsible for the nondynamic/static
electron correlation (it creates the reference part of the wave
function) while eŜ1+Ŝ2 takes care of the dynamic electron
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correlation. R̂ “lifts up” the ground state vector eŜ1+Ŝ2Ĉ|0æ to a
particular excited state (like in the SAC-CI or EOMCC
schemes). For the ground electronic state, R̂ = 1̂. For SR
problems, Ĉ = 1̂. Construction of R̂ and Ĉ is regulated by
predefined thresholds. The semiadaptive MEG4/EX-MEG4
ansatz is quite flexible and was successfully employed in
solving some SR/MR problems.92 Compared to the SRMRCC
theory, it has the advantage of not using the active-orbital-space
concept. However, strictly speaking, both SAC-CI-general-R
and MEG4/EX-MEG4 methods are not rigorously size-
extensive.

A fully adaptive CI approach was suggested by Nakatsuji and
Ehara. The method is called iterative CI with general singles and
doubles (ICI-GSD).349 The ICI-GSD wave function

jΨæ ¼ ðY
n
ð1 þ T̂ðnÞÞÞj0æ ð5:5:4Þ

is constructed by iteratively applying the GSD operator T̂(n) until
the equations

ÆΨjðĤ � EÞp̂þr̂�jΨæ ¼ 0, " p, r ð5:5:5Þ

ÆΨjðĤ � EÞp̂þq̂þ ŝ� r̂�jΨæ ¼ 0, " p, q, r, s ð5:5:6Þ
are satisfied. These equations are equivalent to the Schr€odinger
equation, reflecting the one- and two-body nature of the electronic
Hamiltonian.350

Another branch of adaptive CI approaches is connected with
the Monte-Carlo (MC) implementation (MCCI).351 In the
MCCI approach, the initial CI space is iteratively extended by
randomly driven augmentation with single and double excita-
tions, until the convergence is reached. After each diagonaliza-
tion, configurations with small weights are discarded. Other
possibly adaptive Monte-Carlo CI/CC developments have been
suggested by Alavi et al.352�354 and Thom.457 In the context of
adaptive methods, the density matrix renormalization group
(DMRG) approach also allows a systematic convergence to the
full CI result.355�358

Recently, a straightforward fully adaptive MR approach based on
the “pure”CC formalismwas suggested by Lyakh and Bartlett.359

The @CC method (“@” stands for “adaptive theory”) fully
exploits the advantages of CC theory. The method is state-specific
and is formally based on the arbitrary-excitation-rank SRCC
ansatz

jΨæ ¼ eT̂ðεÞj0æ ð5:5:7Þ
where the cluster operator T̂(ε) is adaptive

T̂ðεÞ ¼ ∑
X: ζðXÞ > ε

tX τ̂X ð5:5:8Þ

where ε is a formal threshold discriminating the cluster ampli-
tudes tX included in the @CC ansatz (ζ(X) > ε) from those not
included (ζ(X)e ε). 0e ζ(X)e 1 is the discriminatory function
(importance selection function, ISF) whose exact form is unknown,
but reasonable approximations are possible, for example, the fully
multiplicative approximation:

" X� a1a2:::an
i1 i2:::im : ζðXÞ ¼

Ym
k¼ 1

ϑðikÞ
Yn
k¼ 1

ϑðakÞ ð5:5:9Þ

where ϑ(ik) and ϑ(ak) are individual orbital contributions
(importance).359 Importantly, the @CC approach does not

employ active orbitals in any form (thus no selection is
needed).

The @CC equations are based on the arbitrary-rank SRCC
equations:

" X , ζðXÞ > ε : ÆXje�T̂ðεÞĤNe
T̂ðεÞj0æ ¼ 0,

EðεÞ ¼ Æ0je�T̂ðεÞĤNe
T̂ðεÞj0æ ð5:5:10Þ

where new cluster amplitudes are automatically introduced into
the @CC cluster operator, T̂(ε), upon decreasing ε, until the
convergence of the energy, E(ε), is observed (the convergence is
not monotonic though):

lim
ε f 0

EðεÞ ¼ EfullCI ð5:5:11Þ
Note that eq 5.5.11 does not assume exactness of the ISF.

Formally, the @CC approach has obvious advantages. The
CC ansatz converges much faster to the full CI solution than an
analogous CI expansion. The @CC method is rigorously size-
extensive. The @CC ansatz is exact in the limit for any electronic
state. Thus, both the ground and excited electronic states of
any (SR or MR) character can be considered in a state-specific
manner (to improve convergence, the reference determinant
|0æmust be one of the dominating determinants). In the case of
excited states of the same symmetry as the ground state, special
care must be taken in order to provide a good initial guess for
the @CC calculation. Moreover, topological properties of
cluster amplitudes can be efficiently exploited when devising
linear-scaling implementations. Actually, Auer and Nooijen
suggested the dynamically screened CCSD approach437

(also called adaptive, ACCSD), where the adaptivity refers to
a selective inclusion of singles and doubles, avoiding the
amplitudes that involve weakly interacting orbitals due to their
spatial locality. An interesting idea would be to combine the
two types of adaptivity in a single CC approach.

A pilot implementation of the @CC method showed some
encouraging results.359 However, in order to draw more defi-
nitive conclusions, a more robust form of the ISF, as well as an
efficient computer implementation of the @CC approach, is
required. Unfortunately, the computational cost of the @CC
method widely varies, depending on the electronic system and
accuracy desired. Also, special care must be taken when
evaluating analytic energy gradients, since the ε threshold
formally introduces discontinuities.

5.6. Size-Extensivity Corrections to the Multireference Con-
figuration-Interaction Approach

Although this review is dedicated to MRCC theory, we
cannot omit the size-consistent multireference CI approach of
Malrieu and co-workers [SC-MRCI, MR(SC)2CI]173�175

because this approach is closely related to the HS-MRCC
theory while utilizing an efficient intermediate Hamiltonian
(IH) technique116 in a state-specific manner. Here we will
briefly discuss the possibility of iterative size-extensivity
corrections to the MRCI approach.

It turns out that one can make a general CI approach
size-extensive by introducing the so-called dressing of the
Hamiltonian,176�179 which cancels out unlinked and discon-
nected contributions contained in the original CI equations (at
least approximately). From the linear-algebraic point of view,
such a dressing restores a proper (linear) scaling of the norm of
the Hamiltonian matrix. For the sake of simplicity let us
consider a state-specific variant of the MR(SC)2CI approach.



221 dx.doi.org/10.1021/cr2001417 |Chem. Rev. 2012, 112, 182–243

Chemical Reviews REVIEW

The exact wave function can be represented as

jΨæ ¼ ∑
μ

Cμjμæ þ ∑
x
Cxjxæ þ ∑

y
Cyjyæ ð5:6:1Þ

where |μæ belongs to the model space P, |xæ belongs to the external
space Q, and |yæ belongs to the orthogonal-complement space Q0.
Suppose the external space includes all single and double excitations
with respect to the model space (excluding the model space itself).
Then the (P x Q) part of the CI eigenvalue problem is

" Æμj ∈ P : ∑
ν
Hμ

νC
ν þ ∑

x
Hμ

x C
x � ECμ ¼ 0

ð5:6:2Þ

" Æzj ∈ Q : ∑
ν
Hz

νC
ν þ ∑

x
Hz

xC
x þ ∑

y
Hz

yC
y � ECz ¼ 0

ð5:6:3Þ
where H[index]

[index] refers to matrix elements of the Hamiltonian
and E is an energy eigenvalue. Now the problem reads:
“Assuming that Cy coefficients can be approximated as functions
of Cμ, Cx, and E, how can one redefine the eigenvalue problem
solely within the (P x Q) space?”. In order to treat all reference
determinants, |μæ, on an equal footing one can always write

Cy ¼ ∑
μ

Cy
μ ð5:6:4Þ

Consequently, eq 5.6.3 can be rewritten as

" Æzj ∈ Q : ∑
ν

Hz
ν þ ðCνÞ�1 ∑

y
Hz

yC
y
ν

 !
Cν

 !

þ ∑
x
Hz

xC
x � ECz ¼ 0 ð5:6:5Þ

Introducing the so-called dressing matrix

Δz
ν ¼ ðCνÞ�1 ∑

y
Hz

yC
y
ν ð5:6:6Þ

one can reformulate the eigenvalue problem as

" Æzj ∈ Q : ∑
ν

~Hz
νC

ν þ ∑
x

~Hz
xC

x � ECz ¼ 0

ð5:6:7Þ
where the matrix

~̂H � Ĥ þ Δ̂ ð5:6:8Þ
is called the dressed Hamiltonian. Note that the H~̂ matrix is
defined solely in the (P x Q) space, but its eigenvector is a
(P x Q)-projection of the exact Hamiltonian eigenvector,
provided that the dressing Δ̂ is exact:

ðP̂ þ Q̂ Þ ~̂HðP̂ þ Q̂ ÞjΨæ ¼ ðP̂ þ Q̂ ÞEjΨæ ð5:6:9Þ
In practice, the dressing matrix Δ̂(Cμ,Cx,E) is only approximate,
leading to approximate eigenvalues and eigenvectors. In order to
expandCν

y coefficients and define Δ̂(Cμ,Cx,E), one can employ the
perturbation theory or the coupled cluster framework.173�178 In
the latter case, Cν

y coefficients are approximated as products of
external and model space coefficients. For example,

Cy
ν ≈ ∑

ðx1, x2Þ f y

Cx1Cx2Cν ð5:6:10Þ

where the sum runs over all external excitation pairs (x1,x2)
producing |yæ ∈ Q0 when acting on the reference determinant
|νæ. Such disconnected dressing has the same effect as dis-
connected cluster products in CC theory, ensuring that the
norm of the Hamiltonian matrix scales linearly with the
number of electrons. Appropriately built dressing restores
the size-extensivity of the MRCI approach. At the same time its
variational nature is lost.

Because the dressing Δ̂(Cμ,Cx,E) depends on the eigenvector
coefficients, the MR(SC)2CI method is state-specific, while an
iterative procedure is required to repeatedly resolve the eigenva-
lue problem in the (P x Q) space and reconstruct the dressing
Δ̂(Cμ,Cx,E):

Δ̂ð0Þ :¼ 0 f ðP̂ þ Q̂ ÞĤðP̂ þ Q̂ ÞjΨæ

¼ Eð0ÞðP̂ þ Q̂ ÞjΨæ f Δ̂ð1Þ

f ðP̂ þ Q̂ Þ ~̂H ð1ÞðP̂ þ Q̂ ÞjΨæ
¼ Eð1ÞðP̂ þ Q̂ ÞjΨæ f Δ̂ð2Þ f ::: ð5:6:11Þ

Alternatively, instead of rescaling the Hamiltonian matrix
elements, one can apply an analogous procedure to the metric
matrix and consider a generalized eigenvalue problem.179 In the
latter case, one explicitly modifies the norm in the Hilbert
space, such that the Hamiltonian matrix yields eigenvalues that
scale correctly with the number of electrons in the system.
Dressing techniques present a quite general way of restoring (at
least approximately) size-extensivity of an arbitrary CI ap-
proach together with its ability to provide a size-consistent
description of certain quantum problems. It also allows refor-
mulating the nonlinear iterative CC equations as a diagonaliza-
tion of the dressed Hamiltonian. Numerically, diagonalization
is a more stable procedure than solving highly nonlinear
equations.

The MR(SC)2CI method was successfully tested on some
model systems,173�175 although we are not aware of any produc-
tion-level computer implementation of the approach. Also no
analytic schemes for evaluating energy gradients are available for the
approach.50 Later, a pseudofunctional analog of the MR(SC)2CI
approach, which simplifies the evaluation of analytic energy
gradients, was formulated.179

Besides the MR(SC)2CI method, there are well-known multi-
reference averaged quadratic CC (MR-AQCC) 180,181 and multi-
reference averaged coupled-pair functional CC (MR-ACPF)182,183

approaches, both being modifications of the MRCI method with
approximate size-extensivity corrections constructed via averaging
of correlation energy contributions. These two similar schemes
can also be formulated as an eigenvalue problem for a dressed
Hamiltonian (diagonal dressing is used).50,184 Hence they can be
equally applied to both ground and excited electronic states (via a
state-specific dressing). In practice, theMR-AQCCmethod gives
remarkably accurate results in MR situations and is usually
preferred over the MR-ACPF, although the only formal differ-
ence is the value of a special scalar parameter G in the underlying
energy functional:184

E ¼
Æ∑

i
CiΦijĤj∑

i
CiΦiæ

∑
i ∈ P

jCij2 þ G ∑
i ˇ P

jCij2
ð5:6:12Þ

The existence of such a functional makes analytic energy gradients
readily available using the standard MRCI machinery.50,187
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We should note that these size-extensivity/size-consistency
corrected MRCI approaches belong to the class of MR-CEPA
methods,88,160,179,185,186 that is, a group of MR methods that
eliminate unlinked terms from the MRCI equations (either exactly
or approximately). MR-CEPA methods can be viewed as an
intermediate approximation between MRCI and MRCC, even
though some of them originate from genuine MRCC
approaches.88,160 A comprehensive review of the MRCI/MR-
CEPA methods can be found in ref 187.

5.7. Conclusions: Alternative Multireference Coupled-Clus-
ter Methods

Taking into account all above arguments we can conclude that
alt-MRCC methods are (at least) competitive with gen-MRCC
approaches. Being conceptually simpler, the SRCC-based
MRCC methods inherit all the effort put into SRCC theory,
such as analytic gradients, molecular properties, efficient compu-
tational schemes, etc. The CASCCSD, RMR-CCSD/RMR-
CCSD(T), TCCSD/TCCSD(T) methods and the MR-
EOMCC schemes are able to provide quantitative description
of many MR problems for which certain genuine MRCCSD
approaches fail (and vice versa).

Particular attention should be paid to development of adaptive
CC formulations (not necessarily @CC) which have an internal
accuracy-control mechanism, thus converging to the “right answer”
up to a predefined precision (at least they should provide some
reasonable confidence in the result obtained). In principle, an
adaptive approach provides a seamless connection between SR
and MR regions of the PES for any electronic state, although
some additional “surface-smoothing” algorithms might be re-
quired. Importantly, adaptive methods do not require selection
of active orbitals.

Therefore, we do believe that alt-MRCC methods have all
perspectives for being a reliable practical tool for solving MR
(and SR) correlated problems. They should in no way be
neglected when discussing practical solutions to MR chemical
problems. One potential drawback of alt-MRCC methods is
connected with the corresponding ans€atze not being rigorously
symmetric with respect to reference determinants (except MR-
EOMCC schemes). However, in practice these contamina-
tions are often small. The main drawback of several genuine
HS-MRCC formulations, namely, the inability to satisfy the
projected Schr€odinger equation, is far more severe than the
symmetry breaking in the SRMRCC ansatz. Nevertheless, in
general, alt-MRCC approaches cannot replace gen-MRCC
methods, which might be more advantageous in certain MR
situations, especially when correct symmetry of the wave
function is crucial (for example, in highly open-shell systems,
like transition-metal complexes).

6. NUMERICAL ILLUSTRATIONS

In order to illustrate numerical performance of different
MRCC approaches, we have collected numerous results ob-
tained in calculations of systems exhibiting MR character in
some (or all) regions of the PES. In each case, the PES
numerically represents a particular chemical transformation,
such as bond-breaking, isomerization, configurational changes,
etc. Both ground- and excited-state PES’s are considered here.
Since all shown molecular systems are quite small, we can use
(for the sake of compactness) the following two integral PES
characteristics, the nonparallelism error (NPE)360 and the max-
imal absolute deviation (MAD). NPE characterizes the extent of

nonparallelism of the calculated PES as compared to the
“pseudoexact” (full CI) one

NPE ¼ jΔEmax �ΔEminj ð6:1Þ
where ΔEmax = maxi(Ei� Ei

FCI), ΔEmin = mini(Ei� Ei
FCI), Ei is

the electronic energy calculated with a particular method, Ei
FCI

is the corresponding full CI energy, and i runs over all calculated
points of the PES. Correspondingly, MAD shows the maximal
absolute error along the PES

MAD ¼ max
i
ðjEi � EFCIi jÞ ð6:2Þ

Although the number of calculated points can vary greatly,
these two integral PES characteristics provide a good estimate
of accuracy as long as at least one point is computed in each
distinct region of a PES.

Besides the classical problem of bond breaking, we demon-
strate numerical results obtained for other multireference phe-
nomena, such as excited states and electronic excitation processes,
description of biradicals, highly symmetric systems and transition
state models, reactions of isomerization, etc. The charts shown
below summarize the results of numerous works already refer-
enced throughout the review. The acronyms of the methods
employed can be found in the list of acronyms. Certain calcula-
tions were performed by us using the ACESIII385 and
GAMESS386 software.

Generally the same chart can involve results obtained in
different basis sets. Therefore, the main purpose of this section
is to show a semiquantitative picture of performance of different
MRCC methods, mostly focusing on severe failures of particular
MRCC/SRCC methods in certain cases. For the sake of clarity,
we define three ranges of energy accuracy of a method
(predominantly for NPE):
(1) ≈1�3 kcal/mol or, equivalently, ≈1�5 mH: acceptable.
(2) ≈3�6 kcal/mol or, equivalently, ≈5�10 mH: condition-

ally acceptable.
(3) >6 kcal/mol or, equivalently, >10 mH: unacceptable (for

MR methods).
Strictly speaking, the three categories of accuracy apply to

relative energies calculated with a particular method. The absolute
error of a size-extensive method should grow roughly linearlywith
the number of electrons in the system, whereas the relative error
should stay bounded (this is why size-extensivity is important).
Nevertheless, since all the systems shown are rather small, the
absolute error will also be provided for the sake of completeness.
For larger molecular systems (and solids) one should use the
ratio MAD/ΔE instead of MAD, where ΔE is the correlation
energy.

Our assessment of the quality of different MRCCmethods is
mostly based on comparisons with the full CI results, although
experimental values are also considered wherever it is appro-
priate. We would like to emphasize that, in general, the only
unambiguous comparison is the one based on full CI (the exact
solution of the Schr€odinger equation in a given one-electron
basis set). It is known that both the electron correlation problem
and the basis set incompleteness problem are essential in provid-
ing accurate results. Nonetheless, the two problems are quite
distinguished from each other. Indeed, the former problem is
connected with delivering a sufficiently accurate expansion of
the correlated wave function in a given (finite) Hilbert space,
whereas the latter problem deals with a systematic enlargement



223 dx.doi.org/10.1021/cr2001417 |Chem. Rev. 2012, 112, 182–243

Chemical Reviews REVIEW

of the size of that Hilbert space. Only a simultaneous solution
of both problems can lead to results that can be compared with
the experimental values. It is methodologically illogical (and
even harmful) to assess the quality of a particular correlated
method by comparing its results with experiment while ne-
glecting the incompleteness of the basis set. Newly developed
sophisticated electronic-structure methods are often compu-
tationally demanding and cannot employ the same quality basis
sets as the existing less accurate approximations. An unambig-
uous assessment of their quality can be done by using the
“pseudoexact” full CI results (or other sufficiently accurate
solutions of the Schr€odinger eigenvalue problem). It should
be realized that, except for some pathological cases, if a method
can construct an accurate wave function in a modest (but not
small!) 1e basis set, it is rather likely that it will converge to the
“exact answer” upon increasing the size of the basis set. This is
the very essence of ab initio quantum chemistry. Therefore,
whenever it was possible, we used the full CI results, whereas
the experimental values provided an alternative when full CI
was unavailable (larger basis sets).

In the following, we do not provide the results obtained with
adaptive approaches, which by definition converge to the full CI
solution to a desired precision. The only possible theoretical
measure would be the amount of variables used to obtain a given
accuracy.359However, this issue has not been thoroughly studied yet.

Below, along with the MRCC results, we also provide the
results obtained with ordinary SRCC methods in order to stress
how badly inaccurate they can be when amultireference problem is
considered (leaving aside even less accurate electronic structure
methods, like MP2, CISD, DFT, etc.). This proves the point that
a robust practical MRCC theory is a highly desirable and necessary
tool for contemporary quantum chemistry (rather than just being a
subject of purely theoretical interest).

6.1. Transition State Models and Isomerization Reactions:
H4, H8, BeH2, Cyclobutadiene Automerization, Pyridyne
Biradicals

A proper description of transition states of chemical reac-
tions is the key ingredient of successful predictions in chemical
kinetics. Although many transition states are still single-refer-
ence by nature, there are numerous examples where the
transition state possesses higher symmetry, leading to the
configurational quasidegeneracy in the wave function (states of
MR character). Another peculiarity of transition state wave
functions is a strong coupling between the dynamic and non-
dynamic electron correlations, where a sufficiently complete
account of both is mandatory. Historically, in MRCC theory
transition states were modeled by considering the following
model molecular systems.

The first system consists of two H2 molecules (H4 model
361)

as shown in Figure 8. The simulated chemical transformation is
based on varying the angle θ. In the limit of θ = 0� the system
possesses D4h symmetry, causing significant quasidegeneracy
effects (strong nondynamic electron correlation). Moving away
from that point decreases the degree of quasidegeneracy in the
system, reducing the character of the ground state back to the SR
case. In the MR region the wave function is dominated by two
determinants that can be generated with the CAS(2,2)
model space.

The H4 model system was extensively employed in many MR
studies. Figure 9 summarizes the NPE’s produced by different
methods in calculation of the PES corresponding to the variation

of the angle θ. As one can see, most methods (MRCC as well as
advanced SRCC) perform well for this transformation, reducing
the original CCSD NPE back to the chemical accuracy range.
There are three observations to be discussed. First, inclusion of
perturbative triples (T) on top of the pl-MRCCSD method
worsens its NPE. As we will see, this often happens when SR
perturbation theory is employed in MR problems. Apparently,
the Møller�Plesset perturbation is no longer small in such cases
(for example, HOMO and LUMO MOs can become (quasi)
degenerate). Second, a relatively high NPE of the SU-MRCCSD
approach originates in the SR region of the PES (larger values of
θ), as one can see from Table 2. As we pointed out in section 3,
the genuine multireference SU-MRCCSD, Mk-MRCCSD, and
BW-MRCCSD approaches poorly satisfy the projected
Schr€odinger equation that often results in noticeable errors in
SR regions of PES’s (also convergence problems can occur).
Finally, one can observe a systematically decreasing NPE in the
series: TCCSD, TCCSD(T), eTCCSD. For the SRCC-based
TCCSD method the (T) correction delivers a more complete
account of the dynamic electron correlation, whereas the
eTCCSD approach explicitly introduces partial relaxation in
the reference space (accounts for coupling between the non-
dynamic and dynamic electron correlations).

Figure 10 shows the next analogous model system also
consisting of four hydrogen atoms, called P4.361 However, in
this case the parameter α (transformation coordinate) regulates
the symmetry of the system by shifting two opposite hydrogen
molecules toward/away from each other. PES NPE values
produced by different methods are shown in Figure 11. The
most interesting observation here is the behavior of the
a posteriori extensivity-corrected BW-MRCCSD approach.
Instead of improving the original (quite good) NPE of the
BW-MRCCSD approach, it drastically amplifies its value, making
it even worse than the CCSD result.

Amore complicated case is theH8model molecular system.362

As shown in Figure 12, it consists of four H2 molecules located in
an octagonal configuration. The parameter α is used for symme-
trically separating the left and right H2 molecules, thus reducing
the symmetry from D8h to D2h. Again α = 0 (D8h) leads to
configurational degeneracy and severe nondynamic electron
correlation effects (MR point). By increasing the value of α
one reduces the nondynamic electron correlation effects. In the
MR region of the PES the wave function is dominated by two

Figure 8. H4 model system (two hydrogen molecules).
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determinants which can be generated within the CAS(2,2)
model space. However, for relatively small values of α there are
other determinants that noticeably contribute to the wave
function. This introduces even stronger nondynamic�dynamic
correlation coupling as compared to the case of H4. The extent of
such coupling can be illustrated by comparing the NPE of the
TCCSD (unrelaxed) and eTCCSD (partially relaxed) methods,
as can be seen from Figure 13 (still the chemical accuracy is
barely achieved). Among other results, one can notice a “use-
lessness” of a direct inclusion of connected triples (CCSDT)
within the ordinary SRCC formalism. This happens because the
first-order interaction space for the CAS(2,2) reference space
involves selected triple and quadruple excitations. Disregarding
quadruples makes the full inclusion of connected triples rather
useless here. In contrast, MRCC approaches restore the balance
between triples and quadruples, resulting in acceptable values
of NPE. Again, the errors of the genuine MRCC methods

(SU-MRCCSD, Mk-MRCCSD, BW-MRCCSD) tend to origi-
nate in the SR region of the PES.

Besides, one can notice the lack of systematic improvement
when proceeding from the perturbative inclusion of triples in
CCSD(T) to the perturbative inclusion of triples and factorized
quadruples in CCSD(TQf). The completely renormalized
analogues, CR-CCSD(T) and CR-CCSD(TQf), show even
worse NPE’s than the original approaches. In true MR cases,
the large Møller�Plesset perturbation leads to a poor conver-
gence of the SR-based low-order perturbation series. It is
interesting to analyze a surprisingly good behavior of the
CCSD(T) method. The error of ordinary SRCC approaches
originates around the MR point α = 0. Going away from that
point, all ordinary SRCC methods produce quite accurate
results. Table 3 explicitly shows the errors produced by different
methods for the H8 model system with α = 0. One can see that
the errors of the CCSD (≈+9.9 mH) and CCSDT (≈�8.3 mH)
methods are similar but have an opposite sign. The CCSD(T)
approach adds the leading-order effects of triple excitations on
top of the CCSD approach, thus almost precisely passing half way

Figure 9. H4 model system: PES nonparallelism errors (NPE) in mH.

Table 2. Errors of Different Methods (in mH) with Respect
to Full CI for a Series of Geometries of the H4Molecule (DZP
basis set)a.

geometry

parameter, θ CCSDb CAS(2,2)CCSDb,d MRexpTb SU-MRCCSDc

0 5.39 1.10/1.10 1.10 �0.69

0.05 1.25 0.67/0.89 0.73 �0.08

0.2 0.75 0.41/0.53 0.44 �1.19

0.5 0.74 0.40/0.50 0.41 �2.38

NPE 4.65 0.71/0.64 0.68 2.29
a θ = 0 leads to the appearance of configurational degeneracy in the
wavefunction (multireference state). bReference 169. cReference 93.
dTwo possible formal reference determinants.

Figure 10. P4 model system (two hydrogen molecules).

Figure 11. P4 model system (two hydrogen molecules): PES nonpar-
allelism errors (NPE) in mH.
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from one inaccurate value to another one. As a result, one has a
surprisingly small error of the CCSD(T) method in the highly
multireference point of PES. This explains why sometimes
ordinary SRCC methods work in MR problems (a similar
situation can be observed in the DFT world). From our point
of view, such random error cancellations cannot be considered as
a reliable way when designing new chemically accurate methods.
We believe that only the approaches pursuing the route of
systematic convergence to the “right answer” can ensure high-
accuracy ab initio predictions.

The next model system considered here is Be 3 3 3H2,
363 shown

in Figure 14. The model represents an insertion of the Be atom
into the H2 molecule. The transformation coordinate connects
the noninteracting subsystems (Be + H2) with the linear
equilibrium state (H�Be�H). The transition state of this
chemical transformation has a pronounced MR character. We
adopt a simplified linear-dependent reaction path that relates
y and z Cartesian coordinates such that the minimum and the

transition state PES points fit the dependency exactly: y(z) =
((2.54� 0.46z) (ref 108). Another distinguishing feature of this
example is a change of the character of the dominating determi-
nant in the wave function along the PES. There are two leading
determinants in the wave function, each of which dominates in a
certain region of the PES while both are quasidegenerate around
the transition-state geometry. As we mentioned in section 5 this
leads to discontinuities in the calculated PES when using SRCC-
based MRCC methods, for example, the CASCCSD approach.
Fortunately, in the regions where such a change takes place, the
CASCCSD energy discontinuity does not exceed the usual error
of the method (however, taking a wrong reference determinant
in other regions can lead to significant errors). Figure 15
illustrates the results. MRCC methods employ the CAS(2,2)
reference space which contains the two leading determinants. As
shown, all MRCCmethods except SU-MRCCSD and L-CTSD/
CASSCF(2,2)NOS (linearized canonical transformation theory,

Figure 12. H8 model system (four hydrogen molecules).

Figure 13. H8 model system: PES nonparallelism errors (NPE)
in mH.

Table 3. H8Model System, cc-pVDZBasis Set,Geometryα=0a

method error, mH

CCSD 9.90

CCSDT �8.31

CCSD(T) 2.95

CCSD(TQf) 7.39

CR-CCSD(T)b 5.38

CR-CCSD(TQf)
b 8.44

TCCSD 11.40

TCCSD(T) 8.36

eTCCSD �3.85

MR-DI-EOMCCSD 9.76

CAS(2,2)CCSD 2.14
a Errors produced by different methods with respect to full CI. bCalcu-
lated with GAMESS.386,262,273,277,279

Figure 14. BeH2 model system: an insertion of the Be atom into the H2

molecule.
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see section 3) yield satisfactory NPE. Note the harmful effect of
the direct inclusion of all connected triples (CCSDT) as
compared to doubles only (CCSD). Surprisingly, the perturba-
tive inclusion of all triples again produces a quite accurate NPE in
this case. Similarly to the previous examples, the BeH2 system has
a pronounced coupling between the nondynamic and dynamic
electron correlations, where both require a sufficiently accurate
account of higher excitations.

As one could notice, for all above systems, the MRCISD
approach yields rather small NPE, reflecting a good parallelism of
the MRCISD PES with respect to the full CI one. However, the
MADof theMRCISD PES (not shown) is noticeably higher than
its NPE. For small molecular systems (as one will see from
numerous examples below), the MRCISD method is capable of
providing chemically accurate NPE, but the lack of a sufficiently
complete account of the dynamic correlation results in rather
large absolute errors of the calculated energies. And, of course,
the MRCISD method is not size-extensive, although the calcu-
lated system has to be sufficiently large to exhibit this deficiency
(actually the size-extensivity error already becomes significant for
moderate-size systems397). MRCISD-based approaches with
size-extensivity corrections, such as MR-AQCC and MR-ACPF,
significantly improve the description of the dynamic electron
correlation, thus decreasing the value of MAD and correcting the
size-extensivity error. For small systems the NPE of CCmethods
usually correlates with MAD. A large value of either of them
points out the inadequacy of the CC method in describing the
problem under consideration. Apparently for larger electronic
systems MAD becomes rather useless (since it grows roughly

linearly with the number of particles) whereas NPE is expected to
stay bounded for adequate methods (as a difference between two
error values). At the same time, MAD divided by the actual
correlation energy (i.e. the relative energy error) will still be a
proper measure of accuracy.

A classical example of the MR transition state emerges when
describing the automerization of cyclobutadiene, schematically
shown in Figure 16. The corresponding PES contains two
degenerate minima (D2h geometries) related through the transi-
tion state which hasD4h spatial symmetry. Such a high symmetry
leads to degeneracy of molecular orbitals (or quasi-degeneracy
when a symmetry-broken Hartree�Fock solution is employed).
Consequently, a configurational quasi-degeneracy plagues the
wave function of the transition state, complicating its accurate
description with ordinary SRCC methods. The leading determi-
nants can be generated with the CAS(2,2) reference space built
on the HOMO and LUMO MOs. The automerization of
cyclobutadiene was extensively studied using a series of different
MRCC methods.110,127,158,333,364,365 Table 4 summarizes the
results of calculation of the automerization energy barrier.
Unfortunately, the full CI results are unavailable for the basis
sets given. It is believed that the experimental value is within the
range 1.6�10 kcal/mol.366 Hence a semiquantitative assessment
of the performance of different methods is still possible. Again
the table clearly demonstrates the failure of ordinary SRCC
approaches. At the same time, almost all MRCC methods
provide reasonable values of the barrier height.

Another MR example is the isomerization of pyridyne.156

There are two isomers (monocyclic and bicyclic forms) of
this biradical (Figure 17) whose relative energies are close.

Figure 15. BeH2 model system: PES nonparallelism errors (NPE) in
mH.

Figure 16. The automerization of the cyclobutadiene molecule.

Table 4. Barrier Height for the Automerization of
Cyclobutadiene

barrier height, kcal/mol

methoda cc-pVDZ cc-pVTZ

CCSDb 21.0 23.2

CCSD(T)b 15.8 18.3

CR-CCSD(T)b 18.3 �
Λ-CCSD(T)b 16.8 19.2

TCCSDb 9.4 12.9

TCCSD(T)b 4.6 7.0

SU-MRCCSDc 7.0 8.7

Mk-MRCCSDc 7.8 9.6

BW-MRCCSD(i.c.)d 6.2 7.4

RMR-CCSDc 10.4 13.0

SU-MRCCSD(T)c 4.8 5.9

Mk-MRCCSD(T)d 7.8 8.9

BW-MRCCSD(T)(i.c.)d 5.7 6.8

RMR-CCSD(T)c 7.2 9.5

MR-AQCCSDe 7.3 8.4

2D-MRCCSD(T)f 6.6 (DZP basis set) �
MR-DI-EOMCCSDb 8.3 10.7

SS-EOM-CCSD[+2]g 8.3 9.5

Experimenth 1.6 � 10.0
aGeometry optimization (method/basis) does not necessarily corre-
spond to the final correlated level. bReference 315. cReference 127.
dReference 158. eReference 365. fReference 110. gReference 333.
hReference 366.
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The bicyclic form of the pyridyne biradical possesses a moderate
MR character. The corresponding dominating determinants can
be generated using the CAS(2,2) reference space which involves
the HOMO and LUMOMOs. As one can see from Table 5, the
CCSD approach yields a wrong sign for the relative energy
between the two isomers! Both TCCSD and CCSD(T)methods
predict a correct energetic order, whereas the TCCSD(T) value
closely correlates with that of the Mk-MRCCSD(T) approach
(for the price of a CCSD(T) calculation).

6.2. Chemical Bond Breaking Problem: F�H, F�F, H�O�H,
H�N�H, CH3, N;N

The essential step of most chemical reactions is breaking/
formation of chemical bonds, which is often connected with
significant effects of the nondynamic/static electron correlation,
as discussed in section 2. In particular, this is true when the bond
is being broken such that two open-shell fragments appear. In
order to assess the performance of different MRCCmethods, we
studied several di/triatomic molecules with chemical bonds of
different order (single/double/triple). The severity of the pro-
blem essentially increases with the bond order. Two ultimate
cases, the problem of triple-bond breaking in the N2 molecule
and the problem of C2 bond breaking, are also shown further.

The FH molecule is used to simulate single-bond breaking. The
corresponding one-dimensional PES is just the dissociation curve
(energy as a function of the internuclear distance, R). Breaking a
single bond in the ground electronic state typically involves two
valence molecular orbitals. In the case of FH they are 3σ bonding
and 4σ antibonding MOs. The multidimensional CAS(2,2) refer-
ence space, built on these orbitals, generally includes four determi-
nants. This reference space was used in MR approaches shown.

Figures 18 and 19 show NPE’s obtained for the FH PES
calculated with different methods. As one can see, all MR
methods yield small values of NPE, demonstrating only moder-
ate MR character of the problem. The Mk-MRCCSD approach
was employed using both localized (loc orb.) and delocalized

(deloc orb.) orbitals.157 Here, the difference between the two is
not significant. However, as one will see in the next examples,
the use of delocalized orbitals in the Mk-MRCCSD approach
can lead to a significant error, while it is still believed that the
localized orbitals can improve the results (in practice the Mk-
MRCCSD-(loc orb.) approach suffers from convergence
problems157). This is also a consequence of the “proper residual”
problem (see subsection 3.5) that amplifies the lack of the
active-orbital invariance in the Mk-MRCCSD method. It also
severely affects the accuracy and applicability of the SU-
MRCCSD and BW-MRCCSD approaches. Such sensitivity of
the Mk-MRCCSD method to the orbital choice is particularly
disturbing due to the fact that usually CC methods are relatively
insensitive to the orbitals used (T̂1 cluster operator is supposed
to handle moderate orbital relaxation). The “gold standard” of
quantum chemistry, the CCSD(T) approach, as well as its more
advanced successor CCSD(TQf), tend to be inadequate in
describing chemical bond breaking in FH due to the use of the
SR perturbation theory. Such perturbatively corrected SRCC
approaches can handle only the equilibrium and intermediate
regions of the bond-breaking coordinate, while completely failing
in the dissociation limit. As we have already mentioned, the
corresponding SR perturbation is no longer small when proceed-
ing to the dissociation region. Consequently, only the MR
versions of perturbation theory can still be used (for example,
the CASPT2 approach where the perturbation is properly
redefined, taking into account the multidimensional nature of
the zeroth-order wave function). In the case of a single-bond
breaking the completely renormalized (CR) corrections273 seem
to be rather efficient when applied to the CCSD(T) and CCSD-
(TQf) approaches. The ΛCCSD(T) approach also significantly
reduces the NPE of CCSD(T), though the corresponding value
is still high in this case.281,282 Besides, let us note a “zero effect” of
the perturbative triples correction (T) applied to the pl-
MRCCSD method.

Similarly, Figure 20 illustrates the performance of different
methods in calculating the PES corresponding to single-bond
breaking in the F2 molecule. The reference space employed in
MRmethods is also of CAS(2,2) type, where the highest bonding
σg and the lowest antibonding σu MOs are taken as active. The
results are quite similar to those obtained for FH, except for the
pl-MRCCSD/pl-MRCCSD(T) methods, which in this case fall
out of the chemical accuracy range.

A significantly more complicated case to describe is the
symmetric dissociation of the H2O molecule in its ground state.

Figure 17. Bicyclic and monocyclic forms of the pyridyne biradical.

Table 5. Energy Difference between the Monocyclic and
Bicyclic Forms of 2,6-Pyridyne Calculated in the cc-pCVTZ
Basis Set

method E(monocyclic) � E(bicyclic), kcal/mol

CCSDa 3.6

CCSD(T)a �5.5

TCCSD �6.78

TCCSD(T) �8.96

Mk-MRCCSDa �3.6

Mk-MRCCSD(T)a �8.8
aReference 156.

Figure 18. FH molecule dissociation: PES nonparallelism errors
(NPE) in mH (part I).
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Having the angle fixed, both O�H bonds are being simulta-
neously stretched, leading to a one-dimensional PES. Because
two single bonds are broken simultaneously, the minimal
(physical) reference space is of CAS(4,4) type, involving four
activeMOs and four active electrons. All possible distributions of
the active electrons on the active orbitals form the multidimen-
sional reference space. Figures 21 and 22 illustrate the results of
the PES simulation using different MR and SR methods. As one
can see, ordinary SRCC methods drastically fail in this situation.
Completely renormalized (CR) corrections are no longer able to
restore the chemical accuracy of an ordinary SRCCmethod. 2SF-
EOMCCSD stands for the double spin-flip EOMCCSD.331 We
should note that reasonable NPE values of some SRCCmethods
mostly originate from ignoring the dissociation limit, thus
considering only moderate multireference regions of the PES.
The inclusion of the dissociation limit into consideration would
worsen their results. Certain genuine MRCCmethods also fail to
provide chemical accuracy in this case. For example, the BW-
MRCCSD and GMS-SU-MRCCSD approaches yield only con-
ditionally acceptable NPE. Two variants of the SRMRCC theory,
namely the pl-MRCCSD and pl-MRCCSD(T) approaches, yield
unacceptable results, the (T) correction playing against the
method again. The MRCISD method itself and especially its
successors (MR-ACPF,MR-AQCC, RMR-CCSD) still stand the
test as well as the CASCCSD method.

A similar bond-breaking model is the symmetric dissociation
of theNH2 radical in its

2B1 ground state.
157,367,368 As one can see

from Figure 23, all shown MR methods, except BW-MRCCSD,
provide a chemically accurate PES for this model. Remarkably, all
MR methods employ the CAS(7,6) reference space involving all
valence electrons.

The next logical step is to examine a simultaneous breaking of
three single bonds. The CH3 radical in its 2B1 ground state
represents such a model.157,368,369 The full valence CAS(7,7)
multidimensional reference space was used by MR methods.
Again, according to Figure 24, all MR methods, except BW-
MRCCSD, give satisfactory results.

Regarding the last two systems (NH2 and CH3), we should note
that the corresponding CAS active spaces comprise all valence

electrons, such that the addition of external singles and doubles
results in a full correlation of the occupied orbital space (the actual
error comes from an incomplete inclusion of virtual-orbital com-
binations when constructing the MRCC ansatz). Nevertheless,
because of the “proper residual” problem, the Mk-MRCCSD/
BW-MRCCSD methods still exhibit noticeable NPE errors.

Finally Figures 25 and 26 demonstrate the results obtained
for a very difficult problem of triple bond breaking in the ground
state of the N2 molecule. The physical reference space is
CAS(6,6), involving six active electrons distributed among six
active MOs: 3σg, 1πu

x, 1πu
y , 1πg

x, 1πg
y, 3σu. Taking into account

the scale of the NPE diagrams, one can see that the Mk-
MRCCSD and BW-MRCCSD methods are unable to provide
even conditionally acceptable accuracy.We should note that the
corresponding NPE values might be underestimated for some
methods, because the range of internuclear separations involved
was often limited to 4.2 bohr at most.157 The most severe MR
region of the triple bond dissociation, (4.2,∞) bohr, was
actually ignored in many calculations. However, as one can
see from Figure 26, certain electronic-structure methods
yield absolutely unphysical results, even without inclusion of
the most difficult part of the PES. We should also note that the
dramatic failure of particular SRCC approaches originate in the

Figure 19. FH molecule dissociation: PES nonparallelism errors
(NPE) in mH (part II).

Figure 20. F2 molecule dissociation: PES nonparallelism errors
(NPE) in mH.

Figure 21. H2O molecule dissociation (symmetrical bond breaking):
PES nonparallelism errors (NPE) in mH (part I).
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use of the RHF reference function. For larger internuclear
separations, it is difficult to obtain a stable RHF solution. The
use of a symmetry-broken UHF reference noticeably reduces
the error,358 yet being far from chemical accuracy.

Overall, even the underestimated NPE values demonstrate
how inadequate the SRCC/MRCCmethods can be in describing
triple-bond breaking. Particular attention should be paid to the
failure of the RHF-CCSDT approach, which does not improve
the unphysical RHF-CCSD results at all. This observation
confirms the fact that the full inclusion of triple excitations is
not only expensive from the computational point of view but is
also inefficient in severe multireference situations. The nature of
most MR problems requires an adequate representation of
selected higher excitations (multireference first-order interaction
space), either via their direct inclusion or via some genuine MR
technique. However, the latter should be free of the “proper
residual” problem, which otherwise can severely deteriorate the
accuracy of the approach.

At the same time, the group of approximately size-extensive
MRCISD-based approaches (MR-ACPF, MR-AQCC, RMR-
CCSD), the SRCC-based CASCCSD method, and the SS-
EOMCCSD approach all give small NPE values for this severe

MR problem. Moreover, their NPE values are calculated for the
entire range of N�N bond elongations. In particular, this
presents a numerical proof that SRCC theory can be properly
modified to effectively capture strong nondynamic/static elec-
tron correlations. An accurate NPE is also produced by the ic-
MRCCSDmethod. The two versions given differ in the value of a
threshold used in the underlying SVD decomposition.90 In this
case, a noticeable difference is observed.

Figure 22. H2O molecule dissociation (symmetrical bond breaking):
PES nonparallelism errors (NPE) in mH (part II).

Figure 23. NH2 dissociation: PES nonparallelism errors (NPE) in mH.

Figure 24. CH3 dissociation: PES nonparallelism errors (NPE) in mH.

Figure 25. N2 molecule dissociation (triple bond breaking): PES
nonparallelism errors (NPE) in mH (part I).

Figure 26. N2 molecule dissociation (triple bond breaking): PES
nonparallelism errors (NPE) in mH (part II).
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One more remark should be made about the stability of the
Hartree�Fock solution when describing chemical bond breaking
processes. Usually correlated methods are built on top of RHF
solutions. However, it often happens that it is difficult to obtain
the minimumRHF solution whenMR effects are strong. This is a
consequence of the fact that in MR situations a qualitatively
correct zeroth-order wave function cannot be represented
as a single determinant. In such cases a proper zeroth-order
wave function should be constructed using the multiconfigura-
tional SCF approach, MCSCF. Another alternative is to use a
symmetry-broken UHF solution as a starting point. In the latter
case serious symmetry contaminations can occur in the wave
function. Keeping an unstable RHF solution as the reference
function can introduce additional errors. For example, in the case
of the N2 molecule dissociation it is hard to obtain the minimum
RHF solution after some point (RN�N≈ 4 bohr ), although this fact
is almost always ignored in the literature. Fortunately, sufficiently
sophisticated CCmethods are relatively insensitive to the Fermi-
vacuum choice, provided that it has some physical sense. How-
ever, this is not the case for SR-CI and SR-PT theories. Conse-
quently, an attempt to utilize the SR-PT theory in order to
improve an SRCC approach may lead to a complete failure.

In other words, any MR problem by definition necessarily
requires a multidimensional zeroth-order wave function (reference
function). Then a proper theoretical model should be acquired in
order to ensure a balanced and sufficiently accurate description of
excitations from the multireference first-order interaction space.
Neglecting these two postulates of MR theory can cause un-
desirable consequences and a failure of the method. One can still
try to use a symmetry-broken UHF solution, which reduces the
interelectronic-interaction perturbation by breaking the symme-
try of the zeroth-order wave function. It is known that UHF-
based SRCC methods usually yield superior correlation energies
as compared to the RHF-based SRCC approaches.358 However,
this is only a partial solution, since one cannot guarantee that the
corresponding Møller�Plesset perturbation is indeed made
sufficiently small by using the UHF reference determinant, or
any other physically motivated reference determinant, such as
Brueckner, Natural, Kohn�Sham, etc.

In order to demonstrate the applicability of the Fock-space
methodology in the description of chemical bond breaking, we
show several potential energy curves in Figures 38, 39, 47, and 48.
One can see that both the genuine IH-FS-(0,2)-MRCC/
FS-(2,0)-MRCC method and the MR-DI/DA-CC approach
provide a reasonable description of single-bond breaking for all

Table 6. Equilibrium Geometrical Parameters and First Three Vibrational Frequencies of the Ozone Molecule (cc-pVTZ basis
set)a

method O�O distance, Å O�O�O angle ω1(a1), cm
�1 ω2(a2), cm

�1 ω3(b2), cm
�1

CCSDb 1.250(�0.022) 117.6(0.8) 1278(143) 763(47) 1266(177)

CCSD(T)c 1.275(0.003) 116.9(0.1) 1153(18) 716(0) 1054(�35)

CCSD(TQf)
h 1.277(0.005) 116.8(0.0) 1144(9) 714(�2) 1094(5)

Mk-MRCCSDb 1.266(�0.006) 116.3(�0.5) 1180(45) 739(23) 1289(200)

Mk-MRCCSD(T)f 1.2897(0.018) 116.1(�0.7) 1081(�54) 694(�22) 1212(123)

BW-MRCCSDb 1.2604(�0.012) 116.6(�0.2) 1218(83) 748(32) 1331(242)

apBW-MRCCSDb 1.2726(0.0006) 115.8(�1.0) 1133(�2) 730(14) 1313(224)

TCCSDd 1.274(0.002) 116.7(�0.1) 1137(2) 718(2) 1098(9)

SF-OD/(DZP)g 1.289(0.017) 116.0(�0.8) 1165(30) 709(�7) 1144(55)

ic-MRCCSDi 1.266 (�0.006) 116.6(�0.2) 1184(49) 738(22) 1243(154)

experimente 1.272 116.8 1135 716 1089
a Errors of the calculated quantities are given in parentheses. bReference 153. cReference 370. dReference 314. eReferences 380, 381. fReference 156.
gReference 327. hReference 371. iReference 90.

Figure 27. PES quality characteristics for the FH molecule dissociation
in the X1Σ state.

Figure 28. PES quality characteristics for the FH molecule dissociation
in the excited 3Σ state.
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molecules shown (F2, Na2, C2H6, N2H4). Note that the methods
properly “reduce” to the SRCC theory in SR regions of the PES’s.

In the context of accurate PES calculations, let us also
provide a classical example of prediction of vibrational frequen-
cies of the ozonemolecule. The ground state of the O3molecule
possesses a noticeable MR character, even around the equilib-
rium geometry, causing problems in accurate reproduction of
the b2 vibrational mode.314,370 Table 6 illustrates the results
obtained with different SRCC/MRCC methods (predominantly
in the cc-pVTZ basis set) as compared to the experimental values

(hoping that cc-pVTZ is sufficient for that). Bearing in mind the
size of the basis set, two observations can be made. First, the
accuracy of all shown genuine MRCC methods for the b2 vibra-
tional mode is comparable or evenworse than theCCSD(T) value.
Second, the perturbative (T) correction is essential for the Mk-
MRCCSDmethod in order to reproduce the experimental value to
a good precision. The actual convergence of theMk-MRCCSD(T)
results with the basis set size can be found in the original paper.156 A
particularly good value of the b2 vibrational mode is supplied by the
TCCSDmethod based on the CASSCF reference, whereas the use
of RHF orbitals leads to noticeably worse results.314

6.3. Chemical Bond Breaking in Excited States: FH, C2, F2,
and H2O Molecules

An even more complicated problem is connected with bond
breaking in excited electronic states. The complications come
from a higher degree of “multiconfigurationality” of excited-state
wave functions, the absence of a general single-determinant
reference function for excited states, and a possibility of
interstate crossings and avoided crossings, which can signifi-
cantly change the character of the electronic state and the

Figure 29. PES quality characteristics for the FH molecule dissociation
in the excited 1Σ state.

Figure 30. PES quality characteristics for the FH molecule dissociation
in the excited 3Π state.

Figure 31. PES quality characteristics for the FH molecule dissociation
in the excited 1Π state.

Figure 32. GMS-SU-MRCCSD description of the F2 dissociation in
five electronic states: (A) X1Σg

+; (B) 11Δg, (C) 2
1Σg

+, (D) 31Σg
+, (E)

21Δg, and (F) 41Σg
+ (data taken from ref 126).

Figure 33. PES characteristics for single bond breaking in the H2O
molecule for 11 electronic states: (A) X1A0, (B) 11A0 0, (C) 21A0 0, (D)
11A0, (E) 21A0, (F) 31A0, (G) 13A0, (H) 23A0, (I) 33A0, (J) 13A0 0, and (K)
23A0 0 (data taken from ref 310).
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corresponding wave function. Moreover, there is a common
problem in describing higher excited states with multistate
approaches (SU-MRCC, FS-MRCC, EOMCC). This problem
stems from the necessity of using the same orbitals for
all the states being simultaneously calculated. Usually the
corresponding orbital set is obtained from the ground-state
calculation, for example, by solving the Hartree�Fock equa-
tions. These orbitals are well-suited for a quite compact

representation of the ground-state wave function, but there
is no guarantee that they will lead to a similar compact
representation of higher excited states. Actually, it can be
shown that Hartree�Fock orbitals are progressively less
optimal when proceeding to higher excited states (due to
orthogonality of electronic states). Hence, an accurate calcu-
lation of higher excited states would require higher and higher

Figure 34. PES characteristics for symmetrical bond breaking in the
H2O molecule for nine electronic states: (A) X1A0, (B) 11A1, (C) 2

1A1,
(D) 11A2, (E) 2

1A2, (F) 1
1B1, (G) 2

1B1, (H) 1
1B2, and (I) 21B2 (data

taken from ref 310).

Figure 35. PES quality characteristics for the C2 molecule dissociation
in the ground 1Σg

+ state.

Figure 36. PES quality characteristics for the C2 molecule dissociation
in the excited B1Δg state.

Figure 37. PES quality characteristics for the C2 molecule dissociation
in the excited B1Σg

+ state.

Figure 38. Dissociation of the F2 molecule (cc-pVDZ basis set).
Reprinted with permission from ref 376. Copyright 2011 American
Institute of Physics.

Figure 39. Dissociation of the Na2 molecule (POL1 basis set).
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excited determinants to be present in the correlation ansatz,
unless some proper orbital relaxation technique is built in. In
multistate SR methods (like EOMCC) higher excitations
(triples and higher) are necessary because there is no proper
“exponential” orbital-relaxation operator for excited states. In
multistate MR methods (like SU-MRCC) an increase of the
reference space is needed. Consequently, both cases lead to a
significant increase of computational demands of the method. In
other words, staying within the same level of sophistication, the
multistate approaches yield progressively less accurate results for
the electronic states for which the orbitals were not optimized.
Although all electronic states are formally treated on the same
footing, the accuracy will noticeably depend on the state. Thus,
relative energy differences (essential in chemistry) will suffer. On
the other hand, extending the correlated ansatz to the “worst” state
would lead to “overdescribing” the “easier” states and wasting
computational resources. For example, in multistate MRmethods
the reference space must be sufficiently large in order to describe
the “most difficult” electronic state, regardless of the character of
other states. These complications make state-specific methods
generally more advantageous in terms of the ratio accuracy/

demands. Using a state-specific description of a certain electronic
state one can adjust everything, including the orbitals, for that
particular state, thus achieving a compact representation of the
corresponding wave function. However, the price paid is the
difficulty of calculation of matrix elements between different states
(among other problems).

For our model studies, we demonstrate the results that
summarize the performance of different CC methods in calcu-
lations of excited state PES’s for several molecules (full excited-
state PES calculations are quite rare in the literature). The
first five plots (Figures 27, 28, 29, 30, and 31) illustrate
the performance of different methods in calculating PES’s for
five electronic states of the FHmolecule: (A) X1Σ, (B) 13Σ, (C)
21Σ, (D) 13Π, and (E) 11Π. Here we provide both the MAD
and NPE values. The XCASCCSD approach is a symmetry-
corrected variant of the CASCCSD method,247 the (N,M)-SU-
MRCCSD approach is a multistate version of the RMR-CCSD

Figure 40. Absolute errors of calculated excitation energies for five
electronic states of the CH2 biradical: (A) 3

1A1, (B) 4
1A1, (C) 1

1B1, (D)
11B2, and (E) 1

1A2.

Figure 41. Absolute errors of calculated excitation energies for four
electronic states of theH2Omolecule: (A) 21A1, (B) 1

1B1, (C) 1
1A2, and

(D) 11B2.

Figure 42. Absolute errors of calculated excitation energies for four
electronic states of the N2 molecule: (A) 1Πg, (B)

1Σu
�, (C) 1Δu, and

(D) 1Πu.

Figure 43. Absolute errors of calculated excitation energies for four
electronic states of the C2 molecule: (A) 1Πu , (B)

1Σu
+, (C) 1Δg, and

(D) 1Πg.
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method built on top of the GMS-SU-MRCCSD approach.312

The CR-EOMCCSD(T)-III approach372 is a completely

renormalized analogue of the CCSD(T)/EOMCCSD(T)
method for the ground/excited states, respectively. For the
XCASCCSD247 andMRexpT171 methods the reference space is
CAS(2,2), involving {3σ,4σ}MOs for the Σ states and {1π,4σ}
MOs for the Π states. Similarly to the previous examples, the
MRCISD(CASCISD) approach is capable of providing chemically
accurate NPE, but the MAD is relatively high. SR-CCSD/
EOMCCSD fails to provide even conditionally acceptable results
because the space of SR singles and doubles used for excited
states is not sufficient. For the FH molecule the CR and (T)
corrections restore the accuracy of the SR-CCSD/EOMCCSD
method. For all five states the MRexpT approach and SRCC-
based XCASCCSD method provide chemically accurate values
of the NPE/MAD. While the NPE of the GMS-SU-MRCCSD is
satisfactory, the MAD value is relatively large.

Figures 32� 34 demonstrate the performance of the GMS-
SU-MRCCSD method in calculations of excited state PES’s
for the F2

126 and H2O molecules.310 In the latter case, both
the single-bond breaking and the symmetric bond breaking
processes are considered. From Figure 32 one can see a

Figure 44. Absolute errors of calculated excitation energies for four
electronic states of the COmolecule: (A) 1Π, (B) 1Σ�, (C) 1Δ, and (D)
1Σ+.

Figure 45. Absolute errors of calculated excitation energies for 11
electronic states of the ethylene molecule: (A) 11Ag, (B) 21Ag , (C)
11B1g, (D) 1

1B1u, (E) 2
1B1u, (F) 1

1B2g, (G) 1
1B2u, (H) 2

1B2u, (I) 1
1B3u,

(J) 21B3u, and (K) 31B3u.

Figure 47. Dissociation of the ethane molecule (cc-pVDZ basis set).

Figure 48. Dissociation of the hydrazine molecule (cc-pVDZ basis set).

Table 7. Singlet�Triplet Energy Splitting for Three Isomers
of Benzyne (in kcal/mol).

method o-benzyne m-benzyne p-benzyne

Mk-MRCCSD/cc-pVDZa 35.1 18.7 4.5

SF-CCSD/cc-pVTZb 36.4 18 3.4

SF-CCSD(dT)/cc-pVTZb 37.3 20.6 4

ic-MRCCSDe 33.740 17.415 3.534

experiment 37.7 ( 0.7c 21.0 ( 0.3d 3.8 ( 0.3d

37.5 ( 0.3d 2.1 ( 0.4d

aReference 153. bReference 382. cReference 383. dReference 384.
eReference 90.

Figure 46. o-Benzyne, m-benzyne, and p-benzyne biradicals.
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progressively deteriorating behavior of the method when
proceeding to higher excited states. As discussed above, one
possible reason is that the GMS reference space used is
sufficient for lower excited states while being too restrictive
for the higher ones. For single-bond breaking in the H2O
molecule the GMS-SU-MRCCSDmethod is noticeably super-
ior to the SR-EOMCCSD approach, although both ap-
proaches give a significant MAD error (see Figure 33). Here
we want to emphasize that the deficiency of the EOMCCSD
method originates not in the EOM scheme itself, but rather in
the insufficient external space used for expanding the excited-
state vectors. As mentioned above, higher and higher excita-
tions need to be added into the EOM CI operator when
proceeding to higher electronic states. However, again, a
direct inclusion of all triples is computationally expensive
and not always necessary in practice. Usually only selected
triple (and higher) excitations, namely, the excitations
from the mutlireference first-order interaction space, are
required for providing a quantitative description of the MR
problem. The corresponding active-space-restricted EOMCC
approaches (EOMCCSDt, EOMCCSDtq, ...)262�264 are suitable
for that. The transition from the EOMCCSD CI operator to
the EOMCCSDtq... CI operator is equivalent to the transition
from the CISD excitation manifold to the MRCISD excitation
manifold (where all excitations are defined with respect to
the same Fermi-vacuum determinant used in the ground-state
CC calculation). The MRCISD excitation space includes all
determinants from the first-order interaction space, ensuring
the correct description of the nondynamic/static electron
correlation.

Figure 34 illustrates similar results obtained for symmetric bond
breaking in the H2O molecule for several excited states. The
incompleteness of the SR singles-and-doubles excitation manifold
is more pronounced here, as one can notice large errors produced
by the ordinary EOMCCSD approach.We should note that similar
methods, likeCC2,373,374 are also likely to fail in suchMR situations
due to the incompleteness of the excitation manifold.

As the ground-state triple-bond dissociation in the N2

molecule constitutes one of the hardest ground-state MR
problems, the dissociation of the C2 molecule in any of the
lowest B1Δg or B

1Σg
+ electronic states presents a challenging

excited-state MR problem, where both nondynamic and static
electron correlations are strong. Both excited states possess
doubly excited character with respect to the ground state X1Σg

+,
which is highly “multireference” by itself, even around the
equilibrium geometry.375 The severity of the problem can be
seen from the failure of SRCC methods, as shown in
Figures 35�37. The CR correction,372 which was efficient in
the case of the FH molecule, is not able to capture such strong
nondynamic/static correlations appearing along the PES of
C�C bond dissociation. At the same time, the SRCC-based
XCASCCSD approach and the pIC-MRCC method yield
chemically accurate results for both the NPE and MAD. The
minimally required multidimensional CAS reference space is
rather large, being of the CAS(6,7) type.

6.4. Excitation Energy Calculations: CH2, H2O, N2, C2, CO,
H2CdCH2, and Benzynes

The calculation of potential energy surfaces has been most-
ly a prerogative of the Hilbert-space MRCC and SRMRCC
approaches. Albeit the FS-MRCC and EOMCC schemes can
also be applied in calculations of the entire PES376 (see

Figures 38, 39, 47, and 48), they have been mostly employed
in studying excitation spectra of molecules. A particular reason is
that the FS-MRCC approach may need rather high sectors of the
Fock space. However, the corresponding higher-sector FS-
MRCC equations are rather complex and require significant effort
put in an implementation of the method. For example, single-
bond breaking usually requires two active electrons, double-bond
breaking needs four active electrons, and triple-bond breaking
needs six active electrons, etc. The corresponding FS-MRCC
approaches would require an explicit consideration of the two-
valence sector, four-valence sector, six-valence sector, etc. (see
subsection 4.1). While the two-valence sector is readily acces-
sible, the higher-sector FS-MRCC methods are still theoretically
challenging. Nevertheless, the implementation of the corre-
sponding methods can be accomplished via the use of automated
symbolic algebra tools that have been significantly advanced dur-
ing the last years.168,256�259,377�379 A conceptually similar but
easier way is offered by the MI/MA-MR-EOMCC scheme,
which was recently shown to be quite efficient in describing
certain MR phenomena, for example, twisting of the ethylene
molecule322 (see also Figures 38, 39, 47, and 48).

Here we will restrict ourselves to showing the performance of
the IH-FS-MRCC and EOMCCmethods, as well as other SRCC
andMRCC approaches, in excitation energy calculations. Figures 40,
41, 42, 43, 44, and 45 demonstrate the results obtained with
different methods for several electronically excited states of the
CH2 biradical, H2O, N2, C2, CO, and ethylene molecules,
respectively. The general observation is that the O(N6)-scaling
MRCC methods (either genuine or alternative) are noticeably
more accurate in excitation energy calculations than ordinary
SRCC models (EOMCCSD, CC2), although the STEOMCCSD
method 237�239 demonstrates similarly good results. One should
note that because of the hierarchical structure the IH-FS-MRCCSD
approach (see section 4) constructs the excited-state vectors in
the space of single excitations only, although both singles and
doubles are used in the ground-state computation. The IH-FS-
MRCCSDT method uses singles and doubles for excited states
but introduces triples for the ground state. Consequently, a more
appropriate scheme would mix the two methods and employ the
singles-and-doubles space in both the ground- and excited-state
calculations. Note that all the methods shown, except those
involving full triples, have comparable computational scaling,
although MRCC approaches normally have larger prefactors in the
computational scaling dependency. Along with all above numerical
examples, SRCC-based MRCC methods, such as CASCCSD,
EOMCCSDt, and EOMCCSDtq, in most cases yield very accurate
results, often of superior quality than the genuine MRCC methods
(at the same level of approximation). Figure 45 is based on the
data taken from ref 128. That methodologically important
paper exhibited serious convergence problems experienced by
the Mk-MRCCSD method in excited-state calculations. Never-
theless, as shown in Table 7, the Mk-MRCCSD approach
provides quite accurate values for the singlet�triplet energy
splitting in three isomers of the benzyne biradical. The ground
state of all three isomers (shown in Figure 46) possesses a
noticeable MR character requiring a proper MR method.

7. TO MULTIREFERENCE OR NOT TO MULTIREFERENCE?

The above numerical results confirm our premise that SRCC
theory should not be excluded from consideration when devel-
oping reliable MRCC methods. Despite using the SRCC
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formalism, the corresponding alt-MRCC approaches still exploit
(sometimes implicitly) the concept of a multidimensional refer-
ence state that provides a proper zeroth-order description of a
multireference problem. The symmetry contamination that can
plague alt-MRCC wave functions is usually quite small, whereas
in adaptive/semiadaptive CC approaches it is also controllable
(in principle). On the other hand, the recently developed
gen-MRCC methods, especially the MRexpT, ic-MRCCSD,
and pIC-MRCCSD approaches, provide remarkably accurate
results for the most difficult MR problems. Thus, we believe
that a fruitful “synthesis” of gen-MRCC and alt-MRCC theories
is possible.

It is often argued that the use of a multidimensional
reference space within the SRCC formalism is undesirable,
because the theory loses black-box character. It is definitely
true that many MRCC theories (either genuine or alternative)
do require some logic to select the reference space (the active
orbital space for CAS/IAS models). However, in general, it is
arguable what black box should mean for an electronic struc-
ture method. If black box means that a method is a “push a
button” procedure that generally leads to unpredictable results
in terms of accuracy, then the current SRCC theory is purely
black box (as well as the widely used SR-PT, SR-CI, and DFT
theories). However, if one adopts a more intelligent definition
where black box means

An internal logic, sufficiently sophisticated to adjust all param-
eters of the method in order to obtain a reasonable accuracy of
the calculation,

then the overwhelming amount of SRCC approaches, each of
which works in certain cases and can drastically fail in other, is
something that can hardly be called black box. Indeed, for a user
to decide which black box SRCCmethod to choose (from tens of
possible variants) is something equivalently complicated as the selec-
tion of the reference space in multireference theories. Unfortu-
nately, the former does not guarantee a quantitative solution of
the problem.

From the mathematical point of view, one cannot neglect the
fact that in multireference situations the wave function cannot be
adequately approximated by a single mean-field determinant.
Hence, in order to create a truly black-box ab initio MRCC
method, it is mandatory to develop a proper logic which would be
capable of selecting an adequate zeroth-order wave function
(reference function) in an automated and unambiguous manner.
The multireference nature of the zeroth-order wave function
must always be accounted for, either explicitly or implicitly. At the
same time, a fixed structure of the model space can lead to
“redundant” reference functions when the multireference char-
acter is lost (the problem of “smooth” reduction of MRCC to
SRCC). Indeed, in practice some of the reference determinants
may lose their impact in some regions of the PES (in SR regions
of the PES) while the CAS reference function often contains low
contributing determinants from the beginning. Hence, the
reference function can involve determinants whose contribution
to the wave function is comparable or even lower than that of
some determinants from the external space (first-order interac-
tion space).

A shared trait of gen-MRCC methods and some alt-MRCC
methods is a significant complexity of the underlying equations
(both represent high-end electronic structure theory). This fact
stimulated a development of automated symbolic algebra tools.

Even though the current MRCC theory mostly exists in “experi-
mental” software, we feel that the power of contemporary
computers has approached a critical point where such sophisticated
methods can start to be routinely applied in solving important
problems of quantum chemistry (relatively small for now),
proving that these theories are not just mathematical constructs
usually applied to model systems only. It should be realized that a
reliable MRCC methodology is mandatory to extend the applic-
ability of CC theory to quasidegenerate (multireference) pro-
blems, preserving the chemical accuracy of calculations the CC
theory is famous for. It is known that more approximate models
(SR-PT, DFT, etc.) are generally unable to deliver chemical
accuracy, especially for multireference problems (however, a
lower accuracy level allows an application to much larger
electronic systems). Now the existing computer power makes
possible a promotion of chemical accuracy to moderate-size
systems of any character, single- or multireference. The devel-
opment of accurate MRCC theories would also be helpful for
calibrating less accurate methods.

Apart from the theoretical advances, there are two main
challenges to be accomplished:
(1) Development of a massively parallel framework for im-

plementing MRCC and other higher-order CC methods.
(2) Development of an advanced black-box logic that would

adjust the method to the problem of interest, ensuring a
reasonable accuracy of calculation.

Successful accomplishment of these tasks would significantly
extend our quantitative understanding of quantum chemical
processes, opening a new era of quantum chemistry.
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LIST OF ACRONYMS
@CC adaptive coupled cluster (method)
alt-MRCC alternative MRCC theory (theory)
2D two-determinantal (prefix)
BCCC block-correlated multireference CC ap-

proach (method)
BW Brillouin�Wigner (prefix)
CAS complete-active space (prefix)
CASCCSD single-reference based multireference CC

approach with a CAS reference (method)
CC coupled cluster (theory)
CCD coupled cluster with doubles (method)
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CCSD coupled cluster with singles and doubles
(method)

CCSDT coupled cluster with singles, doubles, and
triples (method)

CCSDTQ coupled cluster with singles, doubles, tri-
ples, and quadruples (method)

CEPA coupled-electron-pair approximation
(method)

CR completely renormalized (prefix)
CI configuration interaction (theory)
CISD configuration interaction with singles and

doubles (method)
CQD configurational quasidegeneracy

(phenomenon)
DA double (electron) attachment (prefix)
DI double ionization (prefix)
EA electron attachment (prefix)
eTCCSD enhanced TCCSD (method)
EOM equation-of-motion (method)
EPV exclusionprinciple violation (physical concept)
FS Fock space (prefix)
full CI/FCI full configuration interaction (method)
gen-MRCC genuine MRCC theory (theory)
GMS general-model space (prefix)
GVB generalized valence bond (method, prefix)
HOMO highest occupied molecular orbital

(chemical concept)
HS Hilbert space (prefix)
IAS incomplete-active space (prefix)
ic/IC internally contracted (prefix)
ic-MRCC Internally contracted MRCC (method)
IH intermediate-Hamiltonian (prefix)
IMS incomplete-model space (prefix)
IP ionization potential (prefix)
JM Jeziorski�Monkhorst (prefix)
LDT linked diagram theorem (theorem)
LUMO lowest unoccupied molecular orbital

(chemical concept)
Λ-CC Λ-based CC (method)
MA multiple (electron) attachment (prefix)
MAD maximal absolute deviation (quantity)
MBPT many-body perturbation theory (theory)
MC multiconfigurational (prefix)
Mk Mukherjee (prefix)
mH milihartree (atomic unit of energy)
MI multiple ionization (prefix)
MMCC method-of-moments in coupled cluster

(theory)
MO molecular orbital (1e spatial function)
MR multireference (prefix)
MRCC multireference coupled cluster (theory)
MR-ACPF MR averaged coupled-pair functional

(method)
MR-AQCC MR averaged quadratic coupled cluster

(method)
MR-FCPF MR full coupled-pair functional (method)
MR(SC)2CI multireference size-consistent self-consis-

tent CI approach (method)
(N,M)-CCSD reduced multireference analogue of SU-

MRCCSD (method)
NPE nonparallelism error (quantity)
occ occupied orbital (chemical concept)

OD obital-optimized CC with doubles
(method)

PES potential energy surface (physical concept)
pIC-MRCC partially internally contracted MRCC

(method)
pl partially linearized (prefix)
PT perturbation theory (theory)
QMMCC quasivariational MMCC (method)
RHF restricted Hartree�Fock (method)
ROHF restricted open-shell Hartree�Fock

(method)
RMR reduced multireference (prefix)
SAC symmetry-adapted-cluster (method)
SAC-CI symmetry-adapted-cluster configuration

interaction (method)
SAC-CI-general-R symmetry-adapted-cluster configuration

interaction with semiadaptive R operator
(method)

SCF self-consistent field (method)
SF/2SF spin-flip/double-spin-flip (prefix)
SR single-reference (prefix)
SRMRCC single-reference based multireference CC

approach (method)
sr-MRCC single-root multireference CC approach

(method)
SS state-specific (prefix)
STEOM similarity-transformed EOM (method)
SU state-universal (prefix)
SVD singular value decomposition (method)
TCCSD tailored CCSD (method)
(T) perturbative triples correction (suffix)
(TQf) perturbative triples and factorized quadru-

ples correction (suffix)
UGA unitary group approach (method)
UHF unrestricted Hartree�Fock (method)
virt virtual orbital (chemical concept)
VOO valence-orbital optimized (prefix)
VU valence-universal (prefix)
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